Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 6 Reference code 19M.1.AHL.TZ2.H_9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number H_9 Adapted from N/A

Question

Consider the functions f and g defined on the domain 0<x<2π by f(x)=3cos2x and g(x)=411cosx.

The following diagram shows the graphs of y=f(x) and y=g(x)

Find the x-coordinates of the points of intersection of the two graphs.

[6]
a.

Find the exact area of the shaded region, giving your answer in the form pπ+q3, where pqQ.

[5]
b.

At the points A and B on the diagram, the gradients of the two graphs are equal.

Determine the y-coordinate of A on the graph of g.

[6]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

3cos2x=411cosx

attempt to form a quadratic in cosx     M1

3(2cos2x1)=411cosx     A1

(6cos2x+11cosx7=0)

valid attempt to solve their quadratic     M1

(3cosx+7)(2cosx1)=0

cosx=12     A1

x=π3,5π3     A1A1

Note: Ignore any “extra” solutions.

[6 marks]

a.

consider (±) 5π3π3(411cosx3cos2x)dx     M1

=(±)[4x11sinx32sin2x]5π3π3     A1

Note: Ignore lack of or incorrect limits at this stage.

attempt to substitute their limits into their integral     M1

=20π311sin5π332sin10π3(4π311sinπ332sin2π3)

=16π3+1132+334+1132+334

=16π3+2532     A1A1

[5 marks]

b.

attempt to differentiate both functions and equate     M1

6sin2x=11sinx     A1

attempt to solve for x     M1

11sinx+12sinxcosx=0

sinx(11+12cosx)=0

cosx=1112(orsinx=0)     A1

y=411(1112)     M1

y=16912(=14112)     A1

[6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.7—Circular functions: graphs, composites, transformations
Show 89 related questions
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 3— Geometry and trigonometry
Topic 5 —Calculus

View options