User interface language: English | Español

Date November 2021 Marks available 2 Reference code 21N.2.AHL.TZ0.9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 9 Adapted from N/A

Question

The height of water, in metres, in Dungeness harbour is modelled by the function H(t)=asin(b(t-c))+d, where t is the number of hours after midnight, and a, b, c and d are constants, where a>0, b>0 and c>0.

The following graph shows the height of the water for 13 hours, starting at midnight.

The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between 2.2m and 6.8m.

All heights are given correct to one decimal place.

Show that b=π6.

[1]
a.

Find the value of a.

[2]
b.

Find the value of d.

[2]
c.

Find the smallest possible value of c.

[3]
d.

Find the height of the water at 12:00.

[2]
e.

Determine the number of hours, over a 24-hour period, for which the tide is higher than 5 metres.

[3]
f.

A fisherman notes that the water height at nearby Folkestone harbour follows the same sinusoidal pattern as that of Dungeness harbour, with the exception that high tides (and low tides) occur 50 minutes earlier than at Dungeness.

Find a suitable equation that may be used to model the tidal height of water at Folkestone harbour.

[2]
g.

Markscheme

12=2πb  OR  b=2π12                A1

b=π6                AG

 

[1 mark]

a.

a=6.8-2.22  OR  a=max-min2                (M1)

=2.3m                A1

 

[2 marks]

b.

d=6.8+2.22  OR  d=max+min2                (M1)

=4.5m                A1

 

[2 marks]

c.

METHOD 1

substituting t=4.5 and H=6.8 for example into their equation for H                (A1)

6.8=2.3sinπ64.5-c+4.5

attempt to solve their equation                (M1)

c=1.5                A1

 

METHOD 2

using horizontal translation of 124                (M1)

4.5-c=3                (A1)

c=1.5                A1

 

METHOD 3

H't=2.3π6cosπ6t-c                (A1)

attempts to solve their H'4.5=0 for c                (M1)

2.3π6cosπ64.5-c=0

c=1.5                A1

 

[3 marks]

d.

attempt to find H when t=12 or t=0, graphically or algebraically                (M1)

H=2.87365

H=2.87m                A1

 

[2 marks]

e.

attempt to solve 5=2.3sinπ6t-1.5+4.5                (M1)

times are t=1.91852 and t=7.08147 , t=13.9185, t=19.0814                (A1)

total time is 2×7.081-1.919

10.3258

=10.3 (hours)                A1


Note: Accept 10.

 

[3 marks]

f.

METHOD 1

substitutes t=113 and H=6.8 into their equation for H and attempts to solve for c                (M1)

6.8=2.3sinπ6113-c+4.5c=23

Ht=2.3sinπ6t-23+4.5                A1

 

METHOD 2
uses their horizontal translation 124=3                (M1)

113-c=3c=23

Ht=2.3sinπ6t-23+4.5                A1

 

[2 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.

Syllabus sections

Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Show 100 related questions
Topic 3— Geometry and trigonometry » SL 3.7—Circular functions: graphs, composites, transformations
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options