DP Mathematics HL Questionbank
The chain rule for composite functions.
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.6a.ii: Find \(g'\left( x \right)\).
- 18M.1.hl.TZ2.6a.i: Find \(f'\left( x \right)\).
- 18M.1.hl.TZ1.7a: Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).
- 18M.1.hl.TZ1.2b: Hence find the values of θ for which \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y\).
- 18M.1.hl.TZ1.2a: Find \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }}\)
- 16M.2.hl.TZ2.12c: (i) Show that \(t'(x) = \frac{{{{[f(x)]}^2} - {{[g(x)]}^2}}}{{{{[f(x)]}^2}}}\) for...
- 16M.1.hl.TZ2.11b: (i) Given that \(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {(3\cos 2h + 4)^2}\), find an...
- 16M.2.hl.TZ1.12e: Given that \(v = {y^3},{\text{ }}y > 0\), find \(\frac{{{\text{d}}v}}{{{\text{d}}x}}\) at...
- 16M.1.hl.TZ1.9: A curve is given by the equation \(y = \sin (\pi \cos x)\). Find the coordinates of all the...
- 16N.2.hl.TZ0.6: An earth satellite moves in a path that can be described by the curve...
- 16N.2.hl.TZ0.10c: Show that \(f'(x) = - \frac{{3{{\text{e}}^x}}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\).
- 17M.2.hl.TZ1.12g.ii: Hence, show that there are no solutions to \(({g^{ - 1}})'(x) = 0\).
- 17M.2.hl.TZ1.12g.i: Hence, show that there are no solutions to \(g'(x) = 0\);
- 17M.2.hl.TZ1.12f: Find \(g'(x)\).
- 17M.2.hl.TZ1.8b: Calculate \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\) when \(\theta = \frac{\pi }{3}\).
- 12N.1.hl.TZ0.8a: Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .
- 08N.2.hl.TZ0.8: If \(y = \ln \left( {\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})} \right)\), show that...
- 09M.2.hl.TZ2.3: (a) Differentiate \(f(x) = \arcsin x + 2\sqrt {1 - {x^2}} \) , \(x \in [ - 1, 1]\) . (b) ...
- 14M.1.hl.TZ1.9: A curve has equation \(\arctan {x^2} + \arctan {y^2} = \frac{\pi }{4}\). (a) Find...
- 14M.2.hl.TZ2.12: Engineers need to lay pipes to connect two cities A and B that are separated by a river of width...
- 15M.1.hl.TZ1.11a: Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).
- 15N.1.hl.TZ0.12b: Find \(f'(x)\).
- 15N.1.hl.TZ0.4a: Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).
- 15N.2.hl.TZ0.13a: Find \(f''(x)\).
- 14N.1.hl.TZ0.7b: \(h'(2)\).