Date | May 2014 | Marks available | 9 | Reference code | 14M.1.hl.TZ1.9 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
A curve has equation \(\arctan {x^2} + \arctan {y^2} = \frac{\pi }{4}\).
(a) Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of x and y.
(b) Find the gradient of the curve at the point where \(x = \frac{1}{{\sqrt 2 }}\) and \(y < 0\).
Markscheme
(a) METHOD 1
\(\frac{{2x}}{{1 + {x^4}}} + \frac{{2y}}{{1 + {y^4}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) M1A1A1
Note: Award M1 for implicit differentiation, A1 for LHS and A1 for RHS.
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{x\left( {1 + {y^4}} \right)}}{{y\left( {1 + {x^4}} \right)}}\) A1
METHOD 2
\({y^2} = \tan \left( {\frac{\pi }{4} - \arctan {x^2}} \right)\)
\( = \frac{{\tan \frac{\pi }{4} - \tan \left( {\arctan {x^2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan {x^2}} \right)} \right)}}\) (M1)
\( = \frac{{1 - {x^2}}}{{1 + {x^2}}}\) A1
\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2x\left( {1 + {x^2}} \right) - 2x\left( {1 - {x^2}} \right)}}{{{{\left( {1 + {x^2}} \right)}^2}}}\) M1
\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 4x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\)
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{2x}}{{y{{\left( {1 + {x^2}} \right)}^2}}}\) A1
\(\left( { = \frac{{2x\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} {{\left( {1 + {x^2}} \right)}^2}}}} \right)\)
[4 marks]
(b) \({y^2} = \tan \left( {\frac{\pi }{4} - \arctan \frac{1}{2}} \right)\) (M1)
\( = \frac{{\tan \frac{\pi }{4} - \tan \left( {\arctan \frac{1}{2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan \frac{1}{2}} \right)} \right)}}\) (M1)
Note: The two M1s may be awarded for working in part (a).
\( = \frac{{1 - \frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\) A1
\(y = - \frac{1}{{\sqrt 3 }}\) A1
substitution into \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)
\( = \frac{{4\sqrt 6 }}{9}\) A1
Note: Accept \(\frac{{8\sqrt 3 }}{{9\sqrt 2 }}\) etc.
[5 marks]
Total [9 marks]