Date | May 2014 | Marks available | 9 | Reference code | 14M.1.hl.TZ1.9 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
A curve has equation arctanx2+arctany2=π4.
(a) Find dydx in terms of x and y.
(b) Find the gradient of the curve at the point where x=1√2 and y<0.
Markscheme
(a) METHOD 1
2x1+x4+2y1+y4dydx=0 M1A1A1
Note: Award M1 for implicit differentiation, A1 for LHS and A1 for RHS.
dydx=−x(1+y4)y(1+x4) A1
METHOD 2
y2=tan(π4−arctanx2)
=tanπ4−tan(arctanx2)1+(tanπ4)(tan(arctanx2)) (M1)
=1−x21+x2 A1
2ydydx=−2x(1+x2)−2x(1−x2)(1+x2)2 M1
2ydydx=−4x(1+x2)2
dydx=−2xy(1+x2)2 A1
(=2x√1+x2√1−x2(1+x2)2)
[4 marks]
(b) y2=tan(π4−arctan12) (M1)
=tanπ4−tan(arctan12)1+(tanπ4)(tan(arctan12)) (M1)
Note: The two M1s may be awarded for working in part (a).
=1−121+12=13 A1
y=−1√3 A1
substitution into dydx
=4√69 A1
Note: Accept 8√39√2 etc.
[5 marks]
Total [9 marks]