Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 9 Reference code 14M.1.hl.TZ1.9
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 9 Adapted from N/A

Question

A curve has equation arctanx2+arctany2=π4.

(a)     Find dydx in terms of x and y.

(b)     Find the gradient of the curve at the point where x=12 and y<0.

Markscheme

(a)     METHOD 1

2x1+x4+2y1+y4dydx=0     M1A1A1

 

Note:     Award M1 for implicit differentiation, A1 for LHS and A1 for RHS.

 

dydx=x(1+y4)y(1+x4)     A1

METHOD 2

y2=tan(π4arctanx2)

=tanπ4tan(arctanx2)1+(tanπ4)(tan(arctanx2))     (M1)

=1x21+x2     A1

2ydydx=2x(1+x2)2x(1x2)(1+x2)2     M1

2ydydx=4x(1+x2)2

dydx=2xy(1+x2)2     A1

(=2x1+x21x2(1+x2)2)

[4 marks]

 

(b)     y2=tan(π4arctan12)     (M1)

=tanπ4tan(arctan12)1+(tanπ4)(tan(arctan12))     (M1)

 

Note:     The two M1s may be awarded for working in part (a).

 

=1121+12=13     A1

y=13     A1

substitution into dydx

=469     A1

 

Note: Accept 8392 etc.

 

[5 marks]

 

Total [9 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » The chain rule for composite functions.

View options