User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ1.2
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

Let \(y = {\text{si}}{{\text{n}}^2}\theta ,\,\,0 \leqslant \theta  \leqslant \pi \).

Find \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }}\)

[2]
a.

Hence find the values of θ for which \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y\).

[5]
b.

Markscheme

attempt at chain rule or product rule     (M1)

\(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta \)     A1

[2 marks]

a.

\(2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta  = 2{\text{si}}{{\text{n}}^2}\theta \)

sin θ = 0     (A1)

θ = 0, \(\pi \)     A1

obtaining cos θ = sin θ     (M1)

tan θ = 1     (M1)

\(\theta  = \frac{\pi }{4}\)     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » The product and quotient rules.
Show 38 related questions

View options