Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ1.2
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

Let y=sin2θ,0θπ.

Find dydθ

[2]
a.

Hence find the values of θ for which dydθ=2y.

[5]
b.

Markscheme

attempt at chain rule or product rule     (M1)

dydθ=2sinθcosθ     A1

[2 marks]

a.

2sinθcosθ=2sin2θ

sin θ = 0     (A1)

θ = 0, π     A1

obtaining cos θ = sin θ     (M1)

tan θ = 1     (M1)

θ=π4     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » The product and quotient rules.
Show 38 related questions

View options