Date | May 2018 | Marks available | 2 | Reference code | 18M.1.hl.TZ1.2 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 2 | Adapted from | N/A |
Question
Let y=sin2θ,0⩽θ⩽π.
Find dydθ
[2]
a.
Hence find the values of θ for which dydθ=2y.
[5]
b.
Markscheme
attempt at chain rule or product rule (M1)
dydθ=2sinθcosθ A1
[2 marks]
a.
2sinθcosθ=2sin2θ
sin θ = 0 (A1)
θ = 0, π A1
obtaining cos θ = sin θ (M1)
tan θ = 1 (M1)
θ=π4 A1
[5 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.