Date | November 2008 | Marks available | 7 | Reference code | 08N.2.hl.TZ0.8 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 8 | Adapted from | N/A |
Question
If \(y = \ln \left( {\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})} \right)\), show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) .
Markscheme
\(y = \ln \left( {\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})} \right)\)
EITHER
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - \frac{2}{3}{{\text{e}}^{ - 2x}}}}{{\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})}}\) M1A1
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2{{\text{e}}^{ - 2x}}}}{{1 + {{\text{e}}^{ - 2x}}}}\) A1
\({{\text{e}}^y} = \frac{1}{3}(1 + {{\text{e}}^{ - 2x}})\) M1
Now \({{\text{e}}^{ - 2x}} = 3{{\text{e}}^y} - 1\) A1
\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2(3{{\text{e}}^y} - 1)}}{{1 + 3{{\text{e}}^y} - 1}}\) A1
\( = - \frac{2}{{3{{\text{e}}^y}}}(3{{\text{e}}^y} - 1)\)
\( = - \frac{2}{3}(3 - {{\text{e}}^{ - y}})\) A1
\( = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) AG
OR
\({{\text{e}}^y} = \frac{1}{3}(1 + {{\text{e}}^{ - 2x}})\) M1A1
\({{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}{{\text{e}}^{ - 2x}}\) M1A1
Now \({{\text{e}}^{ - 2x}} = 3{{\text{e}}^y} - 1\) (A1)
\( \Rightarrow {{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}(3{{\text{e}}^y} - 1)\)
\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}{{\text{e}}^{ - y}}(3{{\text{e}}^y} - 1)\) (A1)
\( = \frac{2}{3}( - 3 + {{\text{e}}^{ - y}})\) (A1)
\( = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) AG
Note: Only two of the three (A1) marks may be implied.
[7 marks]
Examiners report
Solutions were generally disappointing with many candidates being awarded the first 2 or 3 marks, but then going no further.