Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2008 Marks available 7 Reference code 08N.2.hl.TZ0.8
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 8 Adapted from N/A

Question

If y=ln(13(1+e2x)), show that dydx=23(ey3) .

Markscheme

y=ln(13(1+e2x))

EITHER

dydx=23e2x13(1+e2x)     M1A1

dydx=2e2x1+e2x     A1

ey=13(1+e2x)     M1

Now e2x=3ey1     A1

dydx=2(3ey1)1+3ey1     A1

=23ey(3ey1)

=23(3ey)     A1

=23(ey3)     AG

OR

ey=13(1+e2x)     M1A1

eydydx=23e2x     M1A1

Now e2x=3ey1     (A1)

eydydx=23(3ey1)

dydx=23ey(3ey1)     (A1)

=23(3+ey)     (A1)

=23(ey3)     AG

Note: Only two of the three (A1) marks may be implied.

 

[7 marks]

Examiners report

Solutions were generally disappointing with many candidates being awarded the first 2 or 3 marks, but then going no further.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » The chain rule for composite functions.

View options