Date | November 2016 | Marks available | 6 | Reference code | 16N.2.hl.TZ0.6 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
An earth satellite moves in a path that can be described by the curve \(72.5{x^2} + 71.5{y^2} = 1\) where \(x = x(t)\) and \(y = y(t)\) are in thousands of kilometres and \(t\) is time in seconds.
Given that \(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 7.75 \times {10^{ - 5}}\) when \(x = 3.2 \times {10^{ - 3}}\), find the possible values of \(\frac{{{\text{d}}y}}{{{\text{d}}t}}\).
Give your answers in standard form.
Markscheme
METHOD 1
substituting for \(x\) and attempting to solve for \(y\) (or vice versa) (M1)
\(y = ( \pm )0.11821 \ldots \) (A1)
EITHER
\(145x + 143y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{145x}}{{143y}}} \right)\) M1A1
OR
\(145x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 143y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0\) M1A1
THEN
attempting to find \(\frac{{{\text{d}}x}}{{{\text{d}}t}}{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}t}} = - \frac{{145(3.2 \times {{10}^{ - 3}})}}{{143\left( {( \pm )0.11821 \ldots } \right)}} \times (7.75 \times {{10}^{ - 5}})} \right)\) (M1)
\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}\) A1
Note: Award all marks except the final A1 to candidates who do not consider ±.
METHOD 2
\(y = ( \pm )\sqrt {\frac{{1 - 72.5{x^2}}}{{71.5}}} \) M1A1
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = ( \pm )0.0274 \ldots \) (M1)(A1)
\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = ( \pm )0.0274 \ldots \times 7.75 \times {10^{ - 5}}\) (M1)
\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}\) A1
Note: Award all marks except the final A1 to candidates who do not consider ±.
[6 marks]