Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 6 Adapted from N/A

Question

Consider the functions f,g, defined for xR, given by f(x)=exsinx and g(x)=excosx.

Find f(x).

[2]
a.i.

Find g(x).

[1]
a.ii.

Hence, or otherwise, find π0exsinxdx.

[4]
b.

Markscheme

attempt at product rule      M1

f(x)=exsinx+excosx      A1

[2 marks]

a.i.

g(x)=excosxexsinx      A1

[1 mark]

a.ii.

METHOD 1

Attempt to add f(x) and g(x)      (M1)

f(x)+g(x)=2exsinx    A1

π0exsinxdx=[ex2(sinx+cosx)]π0 (or equivalent)      A1

Note: Condone absence of limits.

=12(1+eπ)    A1

 

METHOD 2

I=exsinxdx

=excosxexcosxdx OR =exsinx+excosxdx     M1A1

=exsinxexcosxexsinxdx

I=12ex(sinx+cosx)     A1

π0exsinxdx=12(1+eπ)    A1

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » The product and quotient rules.
Show 38 related questions

View options