Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 8 Reference code 18M.3ca.hl.TZ0.5
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Solve Question number 5 Adapted from N/A

Question

Consider the differential equation xdydxy=xp+1 where xR,x0 and p is a positive integer, p>1.

Solve the differential equation given that y=1 when x=1. Give your answer in the form y=f(x).

[8]
a.

Show that the x-coordinate(s) of the points on the curve y=f(x) where dydx=0 satisfy the equation xp1=1p.

[2]
b.i.

Deduce the set of values for p such that there are two points on the curve y=f(x) where dydx=0. Give a reason for your answer.

[2]
b.ii.

Markscheme

METHOD 1

dydx=yx=xp1+1x    (M1)

integrating factor =e1xdx     M1

 = elnx     (A1)

1x     A1

1xdydxyx2=xp2+1x2     (M1)

ddx(yx)=xp2+1x2

yx=1p1xp11x+C    A1

Note: Condone the absence of C.

y=1p1xp+Cx1

substituting x=1y=1C=1p1    M1 

Note: Award M1 for attempting to find their value of C.

y=1p1(xpx)1      A1

[8 marks]

 

METHOD 2

put y=vx so that dydx=v+xdvdx    M1(A1)

substituting,       M1 

x(v+xdvdx)vx=xp+1     (A1)

xdvdx=xp1+1x      M1

dvdx=xp2+1x2

v=1p1xp11x+C     A1

Note: Condone the absence of C.

y=1p1xp+Cx1

substituting x=1y=1C=1p1    M1 

Note: Award M1 for attempting to find their value of C.

y=1p1(xpx)1      A1

[8 marks]

a.

METHOD 1

find dydx and solve dydx=0 for x

dydx=1p1(pxp11)     M1

dydx=0pxp11=0     A1

pxp1=1

Note: Award a maximum of M1A0 if a candidate’s answer to part (a) is incorrect.

xp1=1p     AG

 

METHOD 2

substitute dydx=0 and their y into the differential equation and solve for x

dydx=0(xpxp1)+1=xp+1     M1

xpx=xppxp     A1

pxp1=1

Note: Award a maximum of M1A0 if a candidate’s answer to part (a) is incorrect.

xp1=1p     AG

[2 marks]

 

b.i.

there are two solutions for x when p is odd (and p>1     A1

if p1 is even there are two solutions (to xp1=1p)

and if p1 is odd there is only one solution (to xp1=1p)   R1

Note: Only award the R1 if both cases are considered.

[4 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 48 related questions

View options