User interface language: English | Español

Date November 2016 Marks available 6 Reference code 16N.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Hence Question number 1 Adapted from N/A

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {\frac{{2x}}{{1 + {x^2}}}} \right)y = {x^2}\), given that \(y = 2\) when \(x = 0\).

Show that \(1 + {x^2}\) is an integrating factor for this differential equation.

[5]
a.

Hence solve this differential equation. Give the answer in the form \(y = f(x)\).

[6]
b.

Markscheme

METHOD 1

attempting to find an integrating factor     (M1)

\(\int {\frac{{2x}}{{1 + {x^2}}}{\text{d}}x = \ln (1 + {x^2})} \)    (M1)A1

IF is \({{\text{e}}^{\ln (1 + {x^2})}}\)     (M1)A1

\( = 1 + {x^2}\)    AG

METHOD 2

multiply by the integrating factor

\((1 + {x^2})\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2xy = {x^2}(1 + {x^2})\)    M1A1

left hand side is equal to the derivative of \((1 + {x^2})y\)

A3

[5 marks]

a.

\((1 + {x^2})\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2xy = (1 + {x^2}){x^2}\)    (M1)

\(\frac{{\text{d}}}{{{\text{d}}x}}\left[ {(1 + {x^2})y} \right] = {x^2} + {x^4}\)

\((1 + {x^2})y = \left( {\int {{x^2} + {x^4}{\text{d}}x = } } \right){\text{ }}\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5}( + c)\)    A1A1

\(y = \frac{1}{{1 + {x^2}}}\left( {\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + c} \right)\)

\(x = 0,{\text{ }}y = 2 \Rightarrow c = 2\)    M1A1

\(y = \frac{1}{{1 + {x^2}}}\left( {\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + 2} \right)\)    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 48 related questions

View options