Processing math: 100%

User interface language: English | Español

Date November 2016 Marks available 6 Reference code 16N.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Hence Question number 1 Adapted from N/A

Question

Consider the differential equation dydx+(2x1+x2)y=x2, given that y=2 when x=0.

Show that 1+x2 is an integrating factor for this differential equation.

[5]
a.

Hence solve this differential equation. Give the answer in the form y=f(x).

[6]
b.

Markscheme

METHOD 1

attempting to find an integrating factor     (M1)

2x1+x2dx=ln(1+x2)    (M1)A1

IF is eln(1+x2)     (M1)A1

=1+x2    AG

METHOD 2

multiply by the integrating factor

(1+x2)dydx+2xy=x2(1+x2)    M1A1

left hand side is equal to the derivative of (1+x2)y

A3

[5 marks]

a.

(1+x2)dydx+2xy=(1+x2)x2    (M1)

ddx[(1+x2)y]=x2+x4

(1+x2)y=(x2+x4dx=) x33+x55(+c)    A1A1

y=11+x2(x33+x55+c)

x=0, y=2c=2    M1A1

y=11+x2(x33+x55+2)    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 48 related questions

View options