DP Mathematical Studies Questionbank

3.3
Description
[N/A]Directly related questions
- 18M.1.sl.TZ2.2c: State whether (q∧r)⇒¬p is a tautology, contradiction or...
- 18M.1.sl.TZ2.2b: Complete the following truth table.
- 18M.1.sl.TZ2.2a: Write down, in words, (q∧r)⇒¬p.
- 18M.1.sl.TZ1.3c: State whether the compound proposition (¬p⇒q) ∨ (¬p∧q) is a...
- 18M.1.sl.TZ1.3b: Complete the truth table.
- 18M.1.sl.TZ1.3a: Write down in words the compound proposition ¬p⇒q.
- 16M.1.sl.TZ2.4c: Hence, justify why q⇒¬r is not a tautology.
- 16M.1.sl.TZ2.4b: Complete the following truth table.
- 16M.1.sl.TZ2.4a: Consider the following propositions: p: The lesson is cancelled q: The teacher is...
- 16N.1.sl.TZ0.5c: On a morning when Sandi does not get up before eight o’clock, use your truth table to determine...
- 16N.1.sl.TZ0.5b: Complete the following truth table.
- 16N.1.sl.TZ0.5a: Write down in words the compound proposition
- 10M.1.sl.TZ1.3a: Complete the truth table below.
- 10M.1.sl.TZ1.3b: Decide whether the compound...
- 10M.1.sl.TZ2.2a: Complete the truth table shown below.
- 10M.1.sl.TZ2.2b: State whether the compound proposition (p∨(p∧q))⇒p is a...
- 11N.1.sl.TZ0.3a: Complete the truth table below.
- 11N.1.sl.TZ0.3b.i: State whether the statement (p∧q)⇒(¬p∨_q) is a logical...
- 11N.1.sl.TZ0.3b.ii: Give a reason for your answer to part (b)(i).
- 10N.1.sl.TZ0.2a: Complete the following truth table.
- 12M.1.sl.TZ2.2a: Complete the truth table below.
- 09N.2.sl.TZ0.2B, c: An incomplete truth table for the compound proposition (¬p∧q)⇒r is...
- 09M.1.sl.TZ1.2c: The truth table for these compound propositions is given below. Complete the column for...
- 11M.1.sl.TZ2.3b: Complete the truth table for ¬a⇒p .
- 11M.1.sl.TZ2.3c: State whether ¬a⇒p is a tautology, a contradiction or neither. Justify your...
- 13M.1.sl.TZ1.6a: Complete the truth table.
- 13M.1.sl.TZ2.2b: Complete the following truth table.
- 13M.1.sl.TZ2.2c: Write down a reason why the statement ¬(p∨¬q) is not a contradiction.
- 07M.1.sl.TZ0.4b: Fill in the four missing truth-values on the table.
- 17N.1.sl.TZ0.4c: State whether the statement ¬p⇒¬(q∨¬r) is the inverse, the...
- 17N.1.sl.TZ0.4b: Complete the truth table.
- 17N.1.sl.TZ0.4a: Write down in words (q∨¬r)⇒p.
- 16N.2.sl.TZ0.6f: Using your answer to part (e), find the value of r which minimizes A.
- 17M.2.sl.TZ2.2c: Copy the following truth table and complete the last three columns.
- 17M.2.sl.TZ2.2b: Write down in words the compound proposition...
- 17M.2.sl.TZ2.2a: Write down in symbolic form the compound proposition “If x is a factor of 60 then x is a...
- 17M.2.sl.TZ2.2e: A row from the truth table from part (c) is given below. Write down one value of x that...
- 17M.2.sl.TZ2.2d: State why the compound proposition...
- 17M.1.sl.TZ1.3c.ii: State whether the statements p∨¬q and q⇒p are logically equivalent....
- 17M.1.sl.TZ1.3c.i: Complete the following truth table.
- 17M.1.sl.TZ1.3b: Write down in symbolic form the compound statement: If I was paid then I completed the task.
- 17M.1.sl.TZ1.3a: Write down in words ¬q.
- 07M.1.sl.TZ0.4c: State whether the proposition...
- SPM.1.sl.TZ0.3b: Complete the truth table for the argument in part (a) using the values below for p , q ,...
- 08N.1.sl.TZ0.4a: Complete the truth table below for the symbolic statement ¬(p∨q) .
- 08M.1.sl.TZ1.6c: Complete the following truth table for p⇒¬q.
- 08M.1.sl.TZ2.1a: (i) Complete the truth table below. (ii) State whether the compound propositions...
- 07N.1.sl.TZ0.7c: Complete the following truth table.
- 13N.1.sl.TZ0.3b: Complete the truth table.
- 14M.1.sl.TZ1.3b: Complete the following truth table.
- 15M.1.sl.TZ2.5a: Complete the following truth table.
- 15M.1.sl.TZ2.5b: Determine whether the compound proposition...
- 15M.2.sl.TZ1.2b: In your answer booklet, copy and complete a truth table for the argument in part (a). Begin your...
- 14N.1.sl.TZ0.5b: Complete the following truth table.
- 14N.1.sl.TZ0.5c: State whether the converse and the inverse of an implication are logically equivalent. Justify...
Sub sections and their related questions
Truth tables: concepts of logical contradiction and tautology.
- 10M.1.sl.TZ1.3a: Complete the truth table below.
- 10M.1.sl.TZ1.3b: Decide whether the compound...
- 10M.1.sl.TZ2.2a: Complete the truth table shown below.
- 10M.1.sl.TZ2.2b: State whether the compound proposition (p∨(p∧q))⇒p is a...
- 11N.1.sl.TZ0.3a: Complete the truth table below.
- 11N.1.sl.TZ0.3b.i: State whether the statement (p∧q)⇒(¬p∨_q) is a logical...
- 11N.1.sl.TZ0.3b.ii: Give a reason for your answer to part (b)(i).
- 10N.1.sl.TZ0.2a: Complete the following truth table.
- 12M.1.sl.TZ2.2a: Complete the truth table below.
- 09N.2.sl.TZ0.2B, c: An incomplete truth table for the compound proposition (¬p∧q)⇒r is...
- 09M.1.sl.TZ1.2c: The truth table for these compound propositions is given below. Complete the column for...
- 13M.1.sl.TZ1.6a: Complete the truth table.
- 13M.1.sl.TZ2.2b: Complete the following truth table.
- 07N.1.sl.TZ0.7c: Complete the following truth table.
- 11M.1.sl.TZ2.3b: Complete the truth table for ¬a⇒p .
- 11M.1.sl.TZ2.3c: State whether ¬a⇒p is a tautology, a contradiction or neither. Justify your...
- 13M.1.sl.TZ2.2c: Write down a reason why the statement ¬(p∨¬q) is not a contradiction.
- 07M.1.sl.TZ0.4b: Fill in the four missing truth-values on the table.
- 07M.1.sl.TZ0.4c: State whether the proposition...
- SPM.1.sl.TZ0.3b: Complete the truth table for the argument in part (a) using the values below for p , q ,...
- 08N.1.sl.TZ0.4a: Complete the truth table below for the symbolic statement ¬(p∨q) .
- 08M.1.sl.TZ1.6c: Complete the following truth table for p⇒¬q.
- 08M.1.sl.TZ2.1a: (i) Complete the truth table below. (ii) State whether the compound propositions...
- 13N.1.sl.TZ0.3b: Complete the truth table.
- 14M.1.sl.TZ1.3b: Complete the following truth table.
- 14N.1.sl.TZ0.5b: Complete the following truth table.
- 14N.1.sl.TZ0.5c: State whether the converse and the inverse of an implication are logically equivalent. Justify...
- 15M.1.sl.TZ2.5a: Complete the following truth table.
- 15M.1.sl.TZ2.5b: Determine whether the compound proposition...
- 15M.2.sl.TZ1.2b: In your answer booklet, copy and complete a truth table for the argument in part (a). Begin your...
- 16M.1.sl.TZ2.4a: Consider the following propositions: p: The lesson is cancelled q: The teacher is...
- 16M.1.sl.TZ2.4b: Complete the following truth table.
- 16M.1.sl.TZ2.4c: Hence, justify why q⇒¬r is not a tautology.
- 16N.2.sl.TZ0.6f: Using your answer to part (e), find the value of r which minimizes A.
- 17N.1.sl.TZ0.4a: Write down in words (q∨¬r)⇒p.
- 17N.1.sl.TZ0.4b: Complete the truth table.
- 17N.1.sl.TZ0.4c: State whether the statement ¬p⇒¬(q∨¬r) is the inverse, the...
- 18M.1.sl.TZ2.2a: Write down, in words, (q∧r)⇒¬p.
- 18M.1.sl.TZ2.2b: Complete the following truth table.
- 18M.1.sl.TZ2.2c: State whether (q∧r)⇒¬p is a tautology, contradiction or...