DP Mathematical Studies Questionbank
Truth tables: concepts of logical contradiction and tautology.
Path: |
Description
[N/A]Directly related questions
- 18M.1.sl.TZ2.2c: State whether \(\left( {q \wedge r} \right) \Rightarrow \neg p\) is a tautology, contradiction or...
- 18M.1.sl.TZ2.2b: Complete the following truth table.
- 18M.1.sl.TZ2.2a: Write down, in words, \(\left( {q \wedge r} \right) \Rightarrow \neg p\).
- 17N.1.sl.TZ0.4c: State whether the statement \(\neg p \Rightarrow \neg (q \vee \neg r)\) is the inverse, the...
- 17N.1.sl.TZ0.4b: Complete the truth table.
- 17N.1.sl.TZ0.4a: Write down in words \((q \vee \neg r) \Rightarrow p\).
- 16M.1.sl.TZ2.4c: Hence, justify why \(q \Rightarrow \neg r\) is not a tautology.
- 16M.1.sl.TZ2.4b: Complete the following truth table.
- 16M.1.sl.TZ2.4a: Consider the following propositions: \(p:\) The lesson is cancelled \(q:\) The teacher is...
- 16N.2.sl.TZ0.6f: Using your answer to part (e), find the value of \(r\) which minimizes \(A\).
- 10M.1.sl.TZ1.3a: Complete the truth table below.
- 10M.1.sl.TZ1.3b: Decide whether the compound...
- 10M.1.sl.TZ2.2a: Complete the truth table shown below.
- 10M.1.sl.TZ2.2b: State whether the compound proposition \((p \vee (p \wedge q)) \Rightarrow p\) is a...
- 11N.1.sl.TZ0.3a: Complete the truth table below.
- 11N.1.sl.TZ0.3b.i: State whether the statement \((p \wedge q) \Rightarrow (\neg p \underline \vee q)\) is a logical...
- 11N.1.sl.TZ0.3b.ii: Give a reason for your answer to part (b)(i).
- 10N.1.sl.TZ0.2a: Complete the following truth table.
- 12M.1.sl.TZ2.2a: Complete the truth table below.
- 09N.2.sl.TZ0.2B, c: An incomplete truth table for the compound proposition \((\neg p \wedge q) \Rightarrow r\) is...
- 09M.1.sl.TZ1.2c: The truth table for these compound propositions is given below. Complete the column for...
- 11M.1.sl.TZ2.3b: Complete the truth table for \(\neg a \Rightarrow p\) .
- 11M.1.sl.TZ2.3c: State whether \(\neg a \Rightarrow p\) is a tautology, a contradiction or neither. Justify your...
- 13M.1.sl.TZ1.6a: Complete the truth table.
- 13M.1.sl.TZ2.2b: Complete the following truth table.
- 13M.1.sl.TZ2.2c: Write down a reason why the statement \(\neg ( p \vee \neg q)\) is not a contradiction.
- 07M.1.sl.TZ0.4b: Fill in the four missing truth-values on the table.
- 07M.1.sl.TZ0.4c: State whether the proposition...
- SPM.1.sl.TZ0.3b: Complete the truth table for the argument in part (a) using the values below for \(p\) , \(q\) ,...
- 08N.1.sl.TZ0.4a: Complete the truth table below for the symbolic statement \(\neg (p \vee q)\) .
- 08M.1.sl.TZ1.6c: Complete the following truth table for \(p \Rightarrow \neg q\).
- 08M.1.sl.TZ2.1a: (i) Complete the truth table below. (ii) State whether the compound propositions...
- 07N.1.sl.TZ0.7c: Complete the following truth table.
- 13N.1.sl.TZ0.3b: Complete the truth table.
- 14M.1.sl.TZ1.3b: Complete the following truth table.
- 15M.1.sl.TZ2.5a: Complete the following truth table.
- 15M.1.sl.TZ2.5b: Determine whether the compound proposition...
- 15M.2.sl.TZ1.2b: In your answer booklet, copy and complete a truth table for the argument in part (a). Begin your...
- 14N.1.sl.TZ0.5b: Complete the following truth table.
- 14N.1.sl.TZ0.5c: State whether the converse and the inverse of an implication are logically equivalent. Justify...