User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.1.sl.TZ2.5
Level SL only Paper 1 Time zone TZ2
Command term Complete Question number 5 Adapted from N/A

Question

Consider the propositions \(r\), \(p\) and \(q\).

Complete the following truth table.

[4]
a.

Determine whether the compound proposition \(\neg \left( {(r \wedge p) \vee \neg q)} \right) \Leftrightarrow \neg (r \wedge p) \wedge q\) is a tautology, a contradiction or neither.

Give a reason.

[2]
b.

Markscheme

    (A1)(A1)(ft)(A1)(ft)(A1)     (C4)

 

Notes: Award (A1) for each correct column.

For the “\({(r \wedge p) \vee \neg q}\)” follow through from the “\(r \wedge p\)” column.

For the “\(\neg \left( {(r \wedge p) \vee \neg q)} \right)\)” column, follow through from the preceding column.

a.

tautology     (A1)(ft)

columns \(\neg \left( {(r \wedge p) \vee \neg q)} \right)\) and \(\neg (r \wedge p) \wedge q\) are identical     (R1)(C2)

 

Notes: Do not award (R0)(A1)(ft). Follow through from their table in part (a).

Award the (R1) for an additional column representing \(\neg \left( {(r \wedge p) \vee \neg q)} \right) \Leftrightarrow \neg (r \wedge p) \wedge q\) that is consistent with their table.

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Logic, sets and probability » 3.1 » Basic concepts of symbolic logic: definition of a proposition; symbolic notation of propositions.

View options