DP Mathematics SL Questionbank
The scalar product of two vectors.
Description
[N/A]Directly related questions
- 18M.1.sl.TZ1.9a: Show...
- 18M.1.sl.TZ1.6: Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.This is...
- 17N.1.sl.TZ0.9c: The point D has coordinates \(({q^2},{\text{ }}0,{\text{ }}q)\). Given that...
- 17N.1.sl.TZ0.9b: Find the value of \(p\).
- 17N.1.sl.TZ0.9a.ii: Find a vector equation for \(L\).
- 17N.1.sl.TZ0.9a.i: Show that...
- 17M.1.sl.TZ2.2b: Given that c = a + 2b, find c.
- 17M.1.sl.TZ2.2a: Find the value of \(k\).
- 17M.1.sl.TZ1.8d.ii: Hence or otherwise, find one point on \({L_2}\) which is \(\sqrt 5 \) units from C.
- 17M.1.sl.TZ1.8d.i: Find a unit vector in the direction of \({L_2}\).
- 17M.1.sl.TZ1.8c: The lines \({L_1}\) and \({L_1}\) intersect at \(C(9,{\text{ }}13,{\text{ }}z)\). Find \(z\).
- 17M.1.sl.TZ1.8b: A second line \({L_2}\), has equation r =...
- 17M.1.sl.TZ1.8a.ii: Hence, write down a vector equation for \({L_1}\).
- 18M.1.sl.TZ2.1b: The vector \(\left( \begin{gathered} 2 \hfill \\ p \hfill \\ 0 \hfill \\ \end{gathered} \right)\)...
- 18M.1.sl.TZ2.1a: Find a vector equation for L1.
- 18M.1.sl.TZ1.9d: Point D is also on L and has coordinates (8, 4, −9). Find the area of triangle OCD.
- 18M.1.sl.TZ1.9c.ii: Write down the value of angle OBA.
- 18M.1.sl.TZ1.9c.i: Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).
- 18M.1.sl.TZ1.9b.ii: Point C (k , 12 , −k) is on L. Show that k = 14.
- 18M.1.sl.TZ1.9b.i: Find a vector equation for L.
- 16M.1.sl.TZ2.7: Let u \( = - 3\)i \( + \) j \( + \) k and v \( = m\)j \( + {\text{ }}n\)k , where...
- 16M.2.sl.TZ1.10d: (i) Show that...
- 16M.2.sl.TZ1.10c: Find \(\theta \).
- 16M.2.sl.TZ1.10b: Show that...
- 16M.2.sl.TZ1.10a: Find \(\overrightarrow {{\text{AB}}} \).
- 16N.1.sl.TZ0.4b: The line through P and Q is perpendicular to the vector 2i \( + \) nk. Find the value of \(n\).
- 12N.1.sl.TZ0.9a: Show that...
- 12N.1.sl.TZ0.9b: Let C and D be points such that ABCD is a rectangle. Given that...
- 12N.1.sl.TZ0.9c: Let C and D be points such that ABCD is a rectangle. Find the coordinates of point C.
- 12N.1.sl.TZ0.9d: Let C and D be points such that ABCD is a rectangle. Find the area of rectangle ABCD.
- 08N.2.sl.TZ0.8c(i) and (ii): (i) Find \(\overrightarrow {{\rm{AB}}} \bullet \overrightarrow {{\rm{AD}}} \). (ii) Hence...
- 11M.1.sl.TZ1.9a(i) and (ii): (i) Write down \(\overrightarrow {{\rm{BA}}} \) . (ii) Find...
- 11M.1.sl.TZ1.9c(i) and (ii): The point D is such that...
- 13M.2.sl.TZ2.8b: Find the value of \(a\) for which \({\rm{q}} = \frac{\pi }{2}\) .
- 14M.2.sl.TZ1.4b: Given that \(u = \left( \begin{array}{c}3\\2\\1\end{array} \right)\) and...
- 14M.1.sl.TZ2.9c: The position of Jack’s airplane \(s\) seconds after it takes off is given by r =...
- 13N.2.sl.TZ0.9b: Show that the lines are perpendicular.
- 15M.1.sl.TZ1.8d: (i) Find \(\overrightarrow {{\text{OC}}} \bullet \overrightarrow {{\text{AB}}} \). (ii) ...
- 15M.2.sl.TZ2.2a: Find (i) \(u \bullet v\); (ii) \(\left| {{u}} \right|\); (iii) ...