Date | May 2017 | Marks available | 3 | Reference code | 17M.1.sl.TZ2.2 |
Level | SL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 2 | Adapted from | N/A |
Question
The vectors a = \(\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)\) and b = \(\left( {\begin{array}{*{20}{c}} {k + 3} \\ k \end{array}} \right)\) are perpendicular to each other.
Find the value of \(k\).
Given that c = a + 2b, find c.
Markscheme
evidence of scalar product M1
eg\(\,\,\,\,\,\)a \( \bullet \) b, \(4(k + 3) + 2k\)
recognizing scalar product must be zero (M1)
eg\(\,\,\,\,\,\)a \( \bullet \) b \( = 0,{\text{ }}4k + 12 + 2k = 0\)
correct working (must involve combining terms) (A1)
eg \(6k + 12,\,\,\,6k = - 12\)
\(\,\,\,\,\,\)\(k = - 2\) A1 N2
[4 marks]
attempt to substitute their value of \(k\) (seen anywhere) (M1)
eg\(\,\,\,\,\,\)b = \(\left( {\begin{array}{*{20}{c}} { - 2 + 3} \\ { - 2} \end{array}} \right)\), 2b = \(\left( {\begin{array}{*{20}{c}} 2 \\ { - 4} \end{array}} \right)\)
correct working (A1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 2 \\ { - 4} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {4 + 2k + 6} \\ {2 + 2k} \end{array}} \right)\)
c = \(\left( {\begin{array}{*{20}{c}} 6 \\ { - 2} \end{array}} \right)\) A1 N2
[3 marks]