User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.sl.TZ1.9
Level SL only Paper 2 Time zone TZ1
Command term Find Question number 9 Adapted from N/A

Question

The weights, in grams, of oranges grown in an orchard, are normally distributed with a mean of 297 g. It is known that 79 % of the oranges weigh more than 289 g and 9.5 % of the oranges weigh more than 310 g.

The weights of the oranges have a standard deviation of σ.

The grocer at a local grocery store will buy the oranges whose weights exceed the 35th percentile.

The orchard packs oranges in boxes of 36.

Find the probability that an orange weighs between 289 g and 310 g.

[2]
a.

Find the standardized value for 289 g.

[2]
b.i.

Hence, find the value of σ.

[3]
b.ii.

To the nearest gram, find the minimum weight of an orange that the grocer will buy.

[3]
c.

Find the probability that the grocer buys more than half the oranges in a box selected at random.

[5]
d.

The grocer selects two boxes at random.

Find the probability that the grocer buys more than half the oranges in each box.

[2]
e.

Markscheme

correct approach indicating subtraction      (A1)

eg  0.79 − 0.095, appropriate shading in diagram

P(289 < w < 310) = 0.695 (exact), 69.5 %      A1 N2

[2 marks]

a.

METHOD 1

valid approach      (M1)

eg    1 − p, 21

−0.806421

z = −0.806      A1 N2

 

METHOD 2

(i) & (ii)

correct expression for z (seen anywhere)   (A1)

eg  \(\frac{{289 - u}}{\sigma }\)

valid approach      (M1)

eg    1 − p, 21

−0.806421

z = −0.806 (seen anywhere)      A1 N2

 

[2 marks]

b.i.

METHOD 1

attempt to standardize     (M1)

eg    \(\sigma  = \frac{{289 - 297}}{z},\,\,\frac{{289 - 297}}{\sigma }\)

correct substitution with their z (do not accept a probability)     A1

eg  \( - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}\)

9.92037

σ = 9.92      A1 N2

 

METHOD 2

(i) & (ii)

correct expression for z (seen anywhere)   (A1)

eg  \(\frac{{289 - u}}{\sigma }\)

valid approach      (M1)

eg    1 − p, 21

−0.806421

z = −0.806 (seen anywhere)      A1 N2

valid attempt to set up an equation with their z (do not accept a probability)     (M1)

eg  \( - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}\)

9.92037

σ = 9.92      A1 N2

[3 marks]

b.ii.

valid approach      (M1)

eg  P(W < w) = 0.35, −0.338520 (accept 0.385320), diagram showing values in a standard normal distribution

correct score at the 35th percentile      (A1)

eg  293.177

294 (g)       A1 N2

Note: If working shown, award (M1)(A1)A0 for 293.
If no working shown, award N1 for 293.177, N1 for 293.

Exception to the FT rule: If the score is incorrect, and working shown, award A1FT for correctly finding their minimum weight (by rounding up)

[3 marks]

c.

evidence of recognizing binomial (seen anywhere)     (M1)

eg  \(X \sim {\text{B}}\left( {36,\,\,p} \right),\,\,{}_n{C_a} \times {p^a} \times {q^{n - a}}\)

correct probability (seen anywhere) (A1)

eg 0.65

EITHER

finding P(X ≤ 18) from GDC     (A1)

eg 0.045720

evidence of using complement      (M1)

eg 1−P(X ≤ 18)

0.954279

P(X > 18) = 0.954     A1  N2

OR

recognizing P(X > 18) = P(X ≥ 19)     (M1)

summing terms from 19 to 36      (A1)

eg  P(X = 19) + P(X = 20) + … + P(X = 36)

0.954279

P(X > 18) = 0.954     A1  N2

[5 marks]

d.

correct calculation      (A1)

\({0.954^2},\,\,\left( \begin{gathered}
2 \hfill \\
2 \hfill \\
\end{gathered} \right){0.954^2}{\left( {1 - 0.954} \right)^0}\)

0.910650

0.911      A1 N2

[2 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 5 - Statistics and probability » 5.9 » Normal distributions and curves.
Show 66 related questions

View options