Processing math: 100%

User interface language: English | Español

Date November 2013 Marks available 3 Reference code 13N.1.sl.TZ0.9
Level SL only Paper 1 Time zone TZ0
Command term Calculate Question number 9 Adapted from N/A

Question

The first three terms of a infinite geometric sequence are m1, 6, m+4, where mZ.

Write down an expression for the common ratio, r.

[2]
a(i).

Hence, show that m satisfies the equation m2+3m40=0.

[2]
a(ii).

Find the two possible values of m.

[3]
b(i).

Find the possible values of r.

[3]
b(ii).

The sequence has a finite sum.

State which value of r leads to this sum and justify your answer.

[3]
c(i).

The sequence has a finite sum.

Calculate the sum of the sequence.

[3]
c(ii).

Markscheme

correct expression for r     A1     N1

eg   r=6m1, m+46

[2 marks]

a(i).

correct equation     A1

eg     6m1=m+46, 6m+4=m16

correct working     (A1)

eg     (m+4)(m1)=36

correct working     A1

eg     m2m+4m4=36, m2+3m4=36

m2+3m40=0     AG     N0

[2 marks] 

a(ii).

valid attempt to solve     (M1)

eg     (m+8)(m5)=0, m=3±9+4×402

m=8, m=5     A1A1     N3

[3 marks]

b(i).

attempt to substitute any value of m to find r     (M1)

eg     681, 5+46

r=32, r=23     A1A1     N3

[3 marks]

b(ii).

r=23   (may be seen in justification)     A1

valid reason     R1     N0

eg     |r|<1, 1<23<1

 

Notes: Award R1 for |r|<1 only if A1 awarded.

[2 marks]

c(i).

finding the first term of the sequence which has |r|<1     (A1)

eg     81, 6÷23

u1=9   (may be seen in formula)     (A1)

correct substitution of u1 and their r into u11r, as long as |r|<1     A1

eg     S=91(23), 953

S=275 (=5.4)     A1     N3

[4 marks] 

c(ii).

Examiners report

[N/A]
a(i).
[N/A]
a(ii).
[N/A]
b(i).
[N/A]
b(ii).
[N/A]
c(i).
[N/A]
c(ii).

Syllabus sections

Topic 1 - Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 92 related questions

View options