User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.1.sl.TZ2.7
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 7 Adapted from N/A

Question

The sums of the terms of a sequence follow the pattern

\({S_1} = 1 + k,{\text{ }}{S_2} = 5 + 3k,{\text{ }}{S_3} = 12 + 7k,{\text{ }}{S_4} = 22 + 15k,{\text{ }} \ldots ,{\text{ where }}k \in \mathbb{Z}.\)

Given that \({u_1} = 1 + k\), find \({u_2},{\text{ }}{u_3}\) and \({u_4}\).

[4]
a.

Find a general expression for \({u_n}\).

[4]
b.

Markscheme

valid method     (M1)

eg     \({u_2} = {S_2} - {S_1},{\text{ }}1 + k + {u_2} = 5 + 3k\)

\({u_2} = 4 + 2k,{\text{ }}{u_3} = 7 + 4k,{\text{ }}{u_4} = 10 + 8k\)     A1A1A1     N4

[4 marks]

a.

correct AP or GP     (A1)

eg     finding common difference is \(3\), common ratio is \(2\)

valid approach using arithmetic and geometric formulas     (M1)

eg     \(1 + 3(n - 1)\)  and \({r^{n - 1}}k\)

\({u_n} = 3n - 2 + {2^{n - 1}}k\)     A1A1     N4

 

Note: Award A1 for \(3n - 2\), A1 for \({2^{n - 1}}k\).

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 92 related questions

View options