User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.sl.TZ1.10
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

The sides of a square are 16 cm in length. The midpoints of the sides of this square are joined to form a new square and four triangles (diagram 1). The process is repeated twice, as shown in diagrams 2 and 3.

 


 

 

Let xnxn denote the length of one of the equal sides of each new triangle.

 

Let AnAn denote the area of each new triangle.

 

The following table gives the values of xnxn and AnAn, for 1n3. Copy and complete the table. (Do not write on this page.)

 

n 1 2 3
xn 8   4
An 32 16  
[4]
a.

The process described above is repeated. Find A6.

[4]
b.

Consider an initial square of side length k cm. The process described above is repeated indefinitely. The total area of the shaded regions is k cm2. Find the value of k.

 

[7]
c.

Markscheme

valid method for finding side length     (M1)

 

eg   82+82=c2, 454590 side ratios, 82, 12s2=16, x2+x2=82

 

correct working for area     (A1)

 

eg   12×4×4

 

n 1 2 3
xn 8 32 4
An 32 16 8

     A1A1     N2N2

[4 marks]

a.

METHOD 1

recognize geometric progression for An     (R1)

eg   un=u1rn1

r=12     (A1)

correct working     (A1)

eg   32(12)5; 4, 2, 1, 12, 14, 

A6=1     A1     N3

 

METHOD 2

attempt to find x6     (M1)

eg   8(12)5, 22, 2, 2, 1, 

x6=2     (A1)

correct working     (A1)

eg   12(2)2

A6=1     A1     N3

[4 marks]

b.

METHOD 1

recognize infinite geometric series     (R1)

eg   Sn=a1r, |r|<1

area of first triangle in terms of k     (A1)

eg   12(k2)2

attempt to substitute into sum of infinite geometric series (must have k)     (M1)

eg   12(k2)2112, k112

correct equation     A1

eg   12(k2)2112=k, k=k2812

correct working     (A1)

eg   k2=4k

valid attempt to solve their quadratic     (M1)

eg   k(k4), k=4 or k=0

k=4     A1     N2

METHOD 2

recognizing that there are four sets of infinitely shaded regions with equal area     R1

area of original square is k2     (A1)

so total shaded area is k24     (A1)

correct equation k24=k     A1

k2=4k    (A1)

valid attempt to solve their quadratic     (M1)

eg   k(k4), k=4 or k=0

k=4     A1     N2

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 92 related questions

View options