Date | May 2017 | Marks available | 6 | Reference code | 17M.1.sl.TZ1.10 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
The following table shows the probability distribution of a discrete random variable \(A\), in terms of an angle \(\theta \).
Show that \(\cos \theta = \frac{3}{4}\).
Given that \(\tan \theta > 0\), find \(\tan \theta \).
Let \(y = \frac{1}{{\cos x}}\), for \(0 < x < \frac{\pi }{2}\). The graph of \(y\)between \(x = \theta \) and \(x = \frac{\pi }{4}\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.
Markscheme
evidence of summing to 1 (M1)
eg\(\,\,\,\,\,\)\(\sum {p = 1} \)
correct equation A1
eg\(\,\,\,\,\,\)\(\cos \theta + 2\cos 2\theta = 1\)
correct equation in \(\cos \theta \) A1
eg\(\,\,\,\,\,\)\(\cos \theta + 2(2{\cos ^2}\theta - 1) = 1,{\text{ }}4{\cos ^2}\theta + \cos \theta - 3 = 0\)
evidence of valid approach to solve quadratic (M1)
eg\(\,\,\,\,\,\)factorizing equation set equal to \(0,{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4 \times 4 \times ( - 3)} }}{8}\)
correct working, clearly leading to required answer A1
eg\(\,\,\,\,\,\)\((4\cos \theta - 3)(\cos \theta + 1),{\text{ }}\frac{{ - 1 \pm 7}}{8}\)
correct reason for rejecting \(\cos \theta \ne - 1\) R1
eg\(\,\,\,\,\,\)\(\cos \theta \) is a probability (value must lie between 0 and 1), \(\cos \theta > 0\)
Note: Award R0 for \(\cos \theta \ne - 1\) without a reason.
\(\cos \theta = \frac{3}{4}\) AG N0
valid approach (M1)
eg\(\,\,\,\,\,\)sketch of right triangle with sides 3 and 4, \({\sin ^2}x + {\cos ^2}x = 1\)
correct working
(A1)
eg\(\,\,\,\,\,\)missing side \( = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}\)
\(\tan \theta = \frac{{\sqrt 7 }}{3}\) A1 N2
[3 marks]
attempt to substitute either limits or the function into formula involving \({f^2}\) (M1)
eg\(\,\,\,\,\,\)\(\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } \)
correct substitution of both limits and function (A1)
eg\(\,\,\,\,\,\)\(\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} \)
correct integration (A1)
eg\(\,\,\,\,\,\)\(\tan x\)
substituting their limits into their integrated function and subtracting (M1)
eg\(\,\,\,\,\,\)\(\tan \frac{\pi }{4} - \tan \theta \)
Note: Award M0 if they substitute into original or differentiated function.
\(\tan \frac{\pi }{4} = 1\) (A1)
eg\(\,\,\,\,\,\)\(1 - \tan \theta \)
\(V = \pi - \frac{{\pi \sqrt 7 }}{3}\) A1 N3
[6 marks]