0%

DP IB Maths: AI HL

Topic Questions

Home / IB / Maths: AI HL / DP / Topic Questions / 5. Calculus / 5.7 Further Differential Equations


5.7 Further Differential Equations

Question 1a

Marks: 6

Consider the following system of coupled differential equations

 x equals negative 3 x plus e to the power of negative 4 t end exponent y

y equals 6 e to the power of negative 2 t end exponent x plus y

with the initial condition x equals 1 comma space y equals 2 when t equals 0.

a)
Use the Euler method with a step size of 0.1 to find approximations for the values of x  and y when t equals 0.5.        

 

    Assess your score
      

    Question 1b

    Marks: 4
    b)
    Show that the system has no equilibrium points other than the origin, for any value of t.
      Assess your score
        

      Question 2a

      Marks: 7

      Consider the following system of differential equations:

       fraction numerator d x over denominator d y end fraction equals 1 half x minus 2 y

      fraction numerator d y over denominator d x end fraction equals x minus 5 over 2 y 

      a)
      By first finding the eigenvalues and corresponding eigenvectors of an appropriate matrix, determine the general solution of the system.
        Assess your score
          

        Question 2b

        Marks: 3

        When t equals 0 comma space x equals negative 3 and y equals 2.

        b)
        Use the given initial condition to determine the exact solution of the system.

         

          Assess your score
            

          Question 2c

          Marks: 2
          c)
          Describe the long-term behaviour of the variables x and y.
            Assess your score
              

            Question 3a

            Marks: 7

            The rates of change of two variables, x and y, are described by the following system of differential equations:

            fraction numerator d x over denominator d t end fraction equals 3 x minus 2 y

            fraction numerator d y over denominator d t end fraction equals 3 x minus 4 y 

            The matrix  open parentheses table row 3 cell negative 2 end cell row 3 cell negative 4 end cell end table close parentheses  has eigenvectors open parentheses table row 2 row 1 end table close parentheses  and open parentheses table row 1 row 3 end table close parentheses.  Initially  x equals 7 and y equals 1. 

            a)
            Use the above information to find the exact solution to the system of differential equations.

             

              Assess your score
                

              Question 3b

              Marks: 6
              b)
              Use the Euler method with a step size of 0.2 to find approximations for the values of x  and y when t equals 1.
                Assess your score
                  

                Question 3c

                Marks: 4
                c)
                i)
                Find the percentage error of the approximations from part (b) compared with the exact values of x and y when t equals 1
                ii)
                Explain how the approximations found in part (b) could be improved.
                  Assess your score
                    

                  Question 4a

                  Marks: 4

                  Consider a system of coupled differential equations with a general solution given by

                   x equals A e to the power of p t end exponent open parentheses table row 2 row 1 end table close parentheses plus B e to the power of q t end exponent open parentheses table row cell negative 2 end cell row 3 end table close parentheses 

                  where p and q are real constants. 

                  For each of the relationships between p and q given below,

                  i)
                  sketch the phase portrait for the system 
                  ii)
                  state whether the point  is a stable equilibrium point or an unstable equilibrium point.

                  (a)    p less than q less than 0.

                   

                    Assess your score
                      
                    Key Concepts
                    Phase Portraits

                    Question 4b

                    Marks: 4

                    b)     p less than 0 less than q

                      Assess your score
                        
                      Key Concepts
                      Phase Portraits

                      Question 4c

                      Marks: 4

                      c)     0 less than p less than q

                        Assess your score
                          
                        Key Concepts
                        Phase Portraits

                        Question 5a

                        Marks: 4

                        The behaviour of two variables, xand y, is modelled by the following system of differential equations:

                        fraction numerator d x over denominator d t end fraction equals 3 x minus 5 y           fraction numerator d y over denominator d t end fraction equals x minus y

                        where x equals 1 and  y equals 1 when t equals 0

                        The matrix open parentheses table row 3 cell negative 5 end cell row 1 cell negative 1 end cell end table close parentheses has eigenvalues of  1 plus straight i and 1 minus straight i

                        (a)    (i)     Find the values of  fraction numerator d x over denominator d t end fraction and fraction numerator d y over denominator d t end fraction at the point open parentheses 0 comma 1 close parentheses

                                 (ii)    Hence sketch the phase portrait of the system with the given initial condition.

                          Assess your score
                            
                          Key Concepts
                          Phase Portraits

                          Question 5b

                          Marks: 3

                          It is suggested that the variables might better be described by the system

                           fraction numerator d x over denominator d y end fraction equals negative 3 x minus 5 y       fraction numerator d y over denominator d t end fraction equals x plus y 

                          with the same initial conditions. 

                          b)    Calculate the eigenvalues of the matrix  open parentheses table row cell negative 3 end cell cell negative 5 end cell row 1 1 end table close parentheses

                            Assess your score
                              

                            Question 5c

                            Marks: 2
                            c)
                            Hence describe how your phase portrait from part (a)(ii) would change to represent this new system of differential equations.
                              Assess your score
                                
                              Key Concepts
                              Phase Portraits

                              Question 6a

                              Marks: 2

                              Scientists have been tracking levels, x and y, of two atmospheric pollutants, and recording the levels of each relative to historical baseline figures (so a positive value indicates an amount higher than the baseline and a negative value indicates an amount less than the baseline).  Based on known interactions of the pollutants with each other and with other substances in the atmosphere, the scientists propose modelling the situation with the following system of differential equations:

                              fraction numerator d x over denominator d t end fraction equals x minus 2 y

                              fraction numerator d y over denominator d t end fraction equals x minus y

                              a)     Find the values of fraction numerator d x over denominator d t end fraction and fraction numerator d y over denominator d t end fraction at the points  open parentheses 1 comma 0 close parentheses and open parentheses 0 comma 1 close parentheses.

                                Assess your score
                                  

                                Question 6b

                                Marks: 3
                                b)
                                Find the eigenvalues of the matrix  open parentheses table row 1 cell negative 2 end cell row 1 cell negative 1 end cell end table close parentheses
                                  Assess your score
                                    

                                  Question 6c

                                  Marks: 4

                                  At the start of the study both pollutants are above baseline levels, with x equals 5 and y equals 3.

                                  c)
                                  Use the above information to sketch a phase portrait showing the long-term behaviour of x and y.
                                    Assess your score
                                      
                                    Key Concepts
                                    Phase Portraits

                                    Question 7a

                                    Marks: 4

                                    Scientists are studying populations of a prey species and a predator species within a particular region.  They initially model the two species by the system of differential equations  fraction numerator d x over denominator d t end fraction equals 1.9 x minus 0.2 y and fraction numerator d y over denominator d t end fraction equals 0.3 x plus 2.6 y , where x represents the size of the prey population (in thousands) and y represents the size of the predator population (in hundreds).  Initially there are 2000 animals in the prey population and 450 in the predator population. 

                                    a)
                                    Given that the eigenvalues of the matrix open parentheses table row cell 1.9 end cell cell negative 0.2 end cell row cell 0.3 end cell cell 2.6 end cell end table close parentheses are 2.5 and 2, with corresponding eigenvectors open parentheses table row cell negative 1 end cell row 3 end table close parentheses and open parentheses table row cell negative 2 end cell row 1 end table close parentheses, sketch a possible trajectory for the change in the populations of the two animals over time.
                                      Assess your score
                                        
                                      Key Concepts
                                      Phase Portraits

                                      Question 7b

                                      Marks: 1

                                      Research suggests that neither species will disappear from the region in the foreseeable future. 

                                      b)
                                      Criticise the model above, particularly in light of this research result.

                                       

                                        Assess your score
                                          

                                        Question 7c

                                        Marks: 2

                                        It is suggested that the system of equations  fraction numerator d x over denominator d t end fraction equals open parentheses 10 minus 2 y close parentheses x and  fraction numerator d y over denominator d t end fraction equals open parentheses 3 x minus 6 close parentheses y should be used as a model instead, where t is measured in decades (1 decade= 10 years ).

                                        c)
                                        Determine the equilibrium points for the system under this model.
                                          Assess your score
                                            
                                          Key Concepts
                                          Equilibrium Points

                                          Question 7d

                                          Marks: 9
                                          d)
                                          i)
                                          Use the Euler method with a step size of 0.002 to find approximations for the values of x and y at one-year intervals up to 8 years after the start of the study.
                                          ii)
                                          Use the values from (d)(i) to sketch a possible trajectory for the change in the populations of the two animals over time, and state what this suggests about the long-term behaviour of the two animal populations under the revised model.

                                           

                                            Assess your score
                                              

                                            Question 8a

                                            Marks: 2

                                            A particle moves in a straight line, such that its displacement x metres at time t seconds is described by the differential equation

                                             fraction numerator straight d squared x over denominator straight d t squared end fraction plus 7 fraction numerator d x over denominator d t end fraction plus 13 x equals 109 

                                            where fraction numerator d x over denominator d t end fraction and fraction numerator straight d squared x over denominator straight d t squared end fraction represent the particle’s velocity and acceleration respectively.

                                            a)
                                            By letting  y equals fraction numerator d x over denominator d t end fraction,  show that the differential equation above can be written as a system of first order differential equations.
                                              Assess your score
                                                

                                              Question 8b

                                              Marks: 6

                                              When t equals 0,  the displacement of the particle is zero and the velocity is negative 2 space ms to the power of negative 1 end exponent.

                                              b)
                                              By applying Euler’s method with a step size of 0.1 to the system of equations found in part (a), along with the given initial condition, find approximations for the
                                              i)
                                              displacement
                                              ii)
                                              velocity

                                              of the particle at time t = 0.5 .

                                                Assess your score
                                                  

                                                Question 8c

                                                Marks: 2
                                                c)
                                                Use the Euler method to determine the long-term stable value of the particle’s displacement.
                                                  Assess your score
                                                    

                                                  Question 8d

                                                  Marks: 1
                                                  d)
                                                  Use your answer from part (c) to explain why the long-term stable value of the particle’s velocity must be zero.

                                                   

                                                    Assess your score