0%

DP IB Maths: AI HL

Topic Questions

Home / IB / Maths: AI HL / DP / Topic Questions / 1. Number & Algebra / 1.8 Eigenvalues & Eigenvectors


1.8 Eigenvalues & Eigenvectors

Question 1a

Marks: 3

Consider the 2 cross times 2 matrix bold italic A defined by 

bold italic A equals open parentheses table row cell 0.1 end cell cell space space 0.4 end cell row cell 0.9 end cell cell space space 0.6 end cell end table close parentheses

(a)
(i)
Find the characteristic polynomial of bold italic A.

(ii)
By solving an appropriate equation with the characteristic polynomial, find the eigenvalues lambda subscript 1 and lambda subscript 2 of bold italic A.
    Assess your score
      

    Question 1b

    Marks: 4

    Let bold italic x subscript bold 1 and bold italic x subscript bold 2 be the eigenvectors of bold italic A corresponding to lambda subscript 1 and lambda subscript 2 respectively.

    (b)
    By solving the eigenvector equations bold italic A bold italic x subscript 1 equals lambda subscript 1 bold italic x subscript 1and bold italic A bold italic x subscript 2 equals lambda subscript 2 bold italic x subscript 2 bold comma   find eigenvectors bold italic x subscript bold 1 and bold italic x subscript bold 2 .
      Assess your score
        

      Question 1c

      Marks: 3

      (c)  Show that the answers to part (b) could alternatively have been found by solving the equations open parentheses bold italic A minus lambda subscript 1 bold italic I close parentheses space bold italic x subscript 1 equals open parentheses table row 0 row 0 end table close parentheses   and  open parentheses bold italic A minus lambda subscript 2 bold italic I close parentheses space bold italic x subscript 2 equals open parentheses table row 0 row 0 end table close parentheses  ,  where bold italic I is the 2 cross times 2 identity matrix. 

        Assess your score
          

        Question 2

        Marks: 1

        Find the eigenvalues and corresponding eigenvectors for the matrix bold italic A defined as

                           bold italic A equals open parentheses table row cell negative 1 end cell cell space space 4 end cell row 1 cell space space 2 end cell end table close parentheses

          Assess your score
            

          Question 3

          Marks: 6

          Consider the matrix bold italic B defined as

                         bold italic B equals open parentheses table row 4 cell space space minus 6 end cell row 1 cell space space minus 2 end cell end table close parentheses 

          Find the eigenvalues and corresponding eigenvectors of bold italic B.

            Assess your score
              

            Question 4a

            Marks: 3

            Find the eigenvalues for each of the following matrices:

            (a)
                              bold italic C equals open parentheses table row cell negative 2 end cell cell space space 13 end cell row cell negative 1 end cell cell space space 2 end cell end table close parentheses
              Assess your score
                

              Question 4b

              Marks: 3
              (b)
                                bold italic D equals open parentheses table row 6 cell space space minus 1 end cell row 17 cell space minus 2 end cell end table close parentheses
                Assess your score
                  

                Question 5a

                Marks: 3

                Consider the matrix bold italic M defined as

                                  bold italic M equals open parentheses table row cell negative 1 end cell k row 3 cell negative 1 end cell end table close parentheses

                 where k element of straight real numbers is a constant.

                The eigenvalues of bold italic M are 2 and negative 4.

                (a)
                Find the value of k.
                  Assess your score
                    

                  Question 5b

                  Marks: 3
                  (b)
                  Find the eigenvectors of bold italic M that correspond to the two eigenvalues.
                    Assess your score
                      

                    Question 5c

                    Marks: 2
                    (c)
                    Hence write bold italic M in the form bold italic P bold italic D bold italic P to the power of negative 1 end exponent, where bold italic P is a matrix of eigenvectors and bold italic D is a diagonal matrix of eigenvalues.
                      Assess your score
                        

                      Question 6a

                      Marks: 3
                      (a)
                      It is given that, for n cross times n matrices bold italic Abold italic B and bold italic C,

                                         bold italic A equals bold italic B bold italic C bold italic B to the power of negative 1 end exponent

                      Use the properties of matrices and matrix inverses to show that bold italic A squared equals bold italic B bold italic C squared bold italic B to the power of negative 1 end exponent.
                        Assess your score
                          

                        Question 6b

                        Marks: 3

                        Consider the matrix  bold italic M equals open parentheses table row 3 cell negative 2 end cell row p 1 end table close parentheses  ,  where space p element of straight real numbers  is a constant and where it is given that open parentheses table row 1 row 2 end table close parentheses is an eigenvector of bold italic M.

                        (b)
                        Find the value ofspace p.
                          Assess your score
                            

                          Question 6c

                          Marks: 5
                          (c)
                          Hence, by first finding the eigenvalues and the other eigenvector of bold italic M, write bold italic M in the form bold italic M equals bold italic P bold italic D bold italic P to the power of negative 1 end exponent for appropriate matrices bold italic P and bold italic D.
                            Assess your score
                              

                            Question 6d

                            Marks: 4

                            (d)   (i)     Use the result of part (c) to show that

                                         bold italic M to the power of n equals 1 third open parentheses table row cell 2 open parentheses 5 to the power of n close parentheses plus open parentheses negative 1 close parentheses to the power of n end cell cell negative 5 to the power of n plus open parentheses negative 1 close parentheses to the power of n end cell row cell negative 2 open parentheses 5 to the power of n close parentheses plus 2 open parentheses negative 1 close parentheses to the power of n end cell cell 5 to the power of n plus 2 open parentheses negative 1 close parentheses to the power of n end cell end table close parentheses

                            (ii)
                            Show that the expression for bold italic M to the power of bold n in part (d)(i) gives the expected result when n equals 1.
                              Assess your score
                                
                              Key Concepts
                              Matrix Powers

                              Question 7a

                              Marks: 2

                              Exobiologists are studying two species of animals in a region of the distant planet Dirion. In the researchers’ models the population of Heliors (a predator species) is indicated by h, while the population of Sklyveths (a competing predator species) is indicated by s.

                              If the respective populations at a particular point in time are h subscript n and s subscript n, then the researchers’ data suggest that the populations one year later may be given by the following system of coupled equations:

                               h subscript n plus 1 end subscript equals 1.06 h subscript n minus 0.16 s subscript n 

                              s subscript n plus 1 end subscript equals negative 0.04 h subscript n plus 0.94 s subscript n

                              (a)
                              Represent the system of equations in the matrix form bold italic x subscript n plus 1 end subscript equals bold italic M bold italic x subscript n.
                                Assess your score
                                  

                                Question 7b

                                Marks: 2

                                At the start of the study, there are 600 Heliors and 500 Sklyveths in the region.

                                (b)
                                Find the expected size of the respective populations after one year.
                                  Assess your score
                                    

                                  Question 7c

                                  Marks: 8
                                  (c)
                                  By first finding the eigenvalues and corresponding eigenvectors of bold italic M write bold italic M in the form bold italic P bold italic D bold italic P to the power of negative 1 end exponent, where bold italic P is a matrix of eigenvectors and bold italic D is a diagonal matrix of eigenvalues.
                                    Assess your score
                                      

                                    Question 7d

                                    Marks: 3
                                    (d)
                                    Hence show that the respective populations after n years are predicted by the model to be h subscript n equals 520 open parentheses 0.9 to the power of n close parentheses plus 80 open parentheses 1.1 to the power of n close parentheses  and s subscript n equals 520 open parentheses 0.9 to the power of n close parentheses minus 20 open parentheses 1.1 to the power of n close parentheses .
                                      Assess your score
                                        
                                      Key Concepts
                                      Matrix Powers

                                      Question 7e

                                      Marks: 4
                                      (e)
                                      Describe what the model predicts in the long term for the populations of the two species, and offer one criticism of the model based on this prediction.
                                        Assess your score