User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.AHL.TZ1.7
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number 7 Adapted from N/A

Question

A continuous random variable X has the probability density function f given by

fx=xx2+k3        0x4      0                 otherwise

where k+.

Show that 16+k-k=k16+k.

[5]
a.

Find the value of k.

[2]
b.

Markscheme

recognition of the need to integrate xx2+k3       (M1)

xx2+k3dx=1

 

EITHER

u=x2+kdudx=2x (or equivalent)       (A1)

xx2+k3dx=12u-32du

=-u-12+c=-x2+k-12+c        A1

 

OR

xx2+k3dx=122xx2+k3dx       (A1)

=-x2+k-12+c        A1

 

THEN

attempt to use correct limits for their integrand and set equal to 1        M1

-u-12k16+k=1  OR  -x2+k-1204=1

-16+k-12+k-12=11k-116+k=1        A1

16+k-k=k16+k        AG

 

[5 marks]

a.

attempt to solve 16+k-k=k16+k      (M1)

k=0.645038

=0.645        A1

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Show 100 related questions
Topic 2—Functions

View options