User interface language: English | Español

Date November 2021 Marks available 3 Reference code 21N.2.SL.TZ0.7
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

Points A and P lie on opposite banks of a river, such that AP is the shortest distance across the river. Point B represents the centre of a city which is located on the riverbank. PB=215km, AP=65km and AP^B=90°.

The following diagram shows this information.

A boat travels at an average speed of 42km h-1. A bus travels along the straight road between P and B at an average speed of 84km h-1.

Find the travel time, in hours, from A to B given that

There is a point D, which lies on the road from P to B, such that BD=xkm. The boat travels from A to D, and the bus travels from D to B.

An excursion involves renting the boat and the bus. The cost to rent the boat is $200 per hour, and the cost to rent the bus is $150 per hour.

the boat is taken from A to P, and the bus from P to B.

[2]
a.i.

the boat travels directly to B.

[2]
a.ii.

Find an expression, in terms of x for the travel time T, from A to B, passing through D.

[3]
b.i.

Find the value of x so that T is a minimum.

[2]
b.ii.

Write down the minimum value of T.

[1]
b.iii.

Find the new value of x so that the total cost C to travel from A to B via D is a minimum.

[3]
c.i.

Write down the minimum total cost for this journey.

[1]
c.ii.

Markscheme

AP42  OR  21584  OR  6542+21584                 (M1)

time =4.10714 (hours)

time =4.11 (hours)                 A1

 

[2 marks]

a.i.

AB=2152+652=224.610                 (A1)

time =5.34787 (hours)

time =5.35 (hours)                 A1

 

[2 marks]

a.ii.

AD=215-x2+652                 (A1)

t=215-x2+65242                 (A1)

T=215-x2+65242+x84=x2-430x+5045042+x84                 A1

 

[3 marks]

b.i.

valid approach to find the minimum for T (may be seen in (iii))                 (M1)

graph of  T  OR  T'=0  OR  graph of T'

x=177.472km

x=177km                 A1

 

[2 marks]

b.ii.

T=3.89980

T=3.90 (hours)                 A1


Note:
Only allow FT in (b)(ii) and (iii) for 0<x<215 and a function T that has a minimum in that interval.

 

[1 mark]

b.iii.

C=200·215-x2+65242+150·x84                 (A1)

valid approach to find the minimum for Cx  (may be seen in (ii))                 (M1)

graph of C  OR  C'=0  OR  graph of C'

x=188.706km

x=189km                 A1


Note:
Only allow FT from (b) if the function T has a minimum in 0<x<215.

 

[3 marks]

c.i.

C=670.864

C=$671                 A1

 

Note: Only allow FT from (c)(i) if the function C has a minimum in 0<x<215.

 

[1 mark]

c.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Show 100 related questions
Topic 2—Functions
Prior learning

View options