User interface language: English | Español

Date November Example questions Marks available 5 Reference code EXN.1.SL.TZ0.2
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Solve Question number 2 Adapted from N/A

Question

Solve the equation 2lnx=ln9+4. Give your answer in the form x=peq where p,q+.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

 

METHOD 1

2lnx-ln9=4

uses mlnx=lnxm       (M1)

lnx2-ln9=4

uses lna-lnb=lnab       (M1)

lnx29=4

x29=e4       A1

x2=9e4x=9e4  x>0       A1

x=3e2  p=3, q=2       A1

 

METHOD 2

expresses 4 as 4lne and uses lnxm=mlnx       (M1)

2lnx=2ln3+4lne  lnx=ln3+2lne       A1

uses 2lne=lne2 and lna+lnb=lnab       (M1)

lnx=ln3e2       A1

x=3e2  p=3, q=2       A1

 

METHOD 3

expresses 4 as 4lne and uses mlnx=lnxm       (M1)

lnx2=ln32+lne4       A1

uses lna+lnb=lnab       (M1)

lnx2=ln32e4

x2=32e4x=32e4  x>0       A1

so x=3e2  x>0  p=3, q=2       A1

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » SL 1.7—Laws of exponents and logs
Show 49 related questions
Topic 1—Number and algebra

View options