Date | May Specimen paper | Marks available | 5 | Reference code | SPM.1.SL.TZ0.6 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 0 |
Command term | Solve and Hence or otherwise | Question number | 6 | Adapted from | N/A |
Question
Show that log9(cos2x+2)=log3√cos2x+2.
[3]
a.
Hence or otherwise solve log3(2sinx)=log9(cos2x+2) for 0<x<π2.
[5]
b.
Markscheme
attempting to use the change of base rule M1
log9(cos2x+2)=log3(cos2x+2)log39 A1
=12log3(cos2x+2) A1
=log3√cos2x+2 AG
[3 marks]
a.
log3(2sinx)=log3√cos2x+2
2sinx=√cos2x+2 M1
4sin2x=cos2x+2 (or equivalent) A1
use of cos2x=1−2sin2x (M1)
6sin2x=3
sinx=(±)1√2 A1
x=π4 A1
Note: Award A0 if solutions other than x=π4 are included.
[5 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.