Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May Specimen paper Marks available 5 Reference code SPM.1.SL.TZ0.6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Solve and Hence or otherwise Question number 6 Adapted from N/A

Question

Show that log9(cos2x+2)=log3cos2x+2.

[3]
a.

Hence or otherwise solve log3(2sinx)=log9(cos2x+2) for 0<x<π2.

[5]
b.

Markscheme

attempting to use the change of base rule       M1

log9(cos2x+2)=log3(cos2x+2)log39       A1

=12log3(cos2x+2)       A1

=log3cos2x+2     AG

[3 marks]

a.

log3(2sinx)=log3cos2x+2

2sinx=cos2x+2      M1

4sin2x=cos2x+2 (or equivalent)      A1

use of cos2x=12sin2x      (M1)

6sin2x=3

sinx=(±)12      A1

x=π4      A1

Note: Award A0 if solutions other than x=π4 are included.

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Show 23 related questions
Topic 1—Number and algebra » SL 1.7—Laws of exponents and logs
Topic 1—Number and algebra
Topic 3— Geometry and trigonometry

View options