User interface language: English | Español

Date May Specimen paper Marks available 5 Reference code SPM.1.SL.TZ0.6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Solve and Hence or otherwise Question number 6 Adapted from N/A

Question

Show that lo g 9 ( cos 2 x + 2 ) = lo g 3 cos 2 x + 2 .

[3]
a.

Hence or otherwise solve lo g 3 ( 2 sin x ) = lo g 9 ( cos 2 x + 2 ) for 0 < x < π 2 .

[5]
b.

Markscheme

attempting to use the change of base rule       M1

lo g 9 ( cos 2 x + 2 ) = lo g 3 ( cos 2 x + 2 ) lo g 3 9        A1

= 1 2 lo g 3 ( cos 2 x + 2 )        A1

= lo g 3 cos 2 x + 2      AG

[3 marks]

a.

lo g 3 ( 2 sin x ) = lo g 3 cos 2 x + 2

2 sin x = cos 2 x + 2       M1

4 si n 2 x = cos 2 x + 2  (or equivalent)      A1

use of  cos 2 x = 1 2 si n 2 x       (M1)

6 si n 2 x = 3

sin x = ( ± ) 1 2       A1

x = π 4       A1

Note: Award A0 if solutions other than x = π 4  are included.

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Show 23 related questions
Topic 1—Number and algebra » SL 1.7—Laws of exponents and logs
Topic 1—Number and algebra
Topic 3— Geometry and trigonometry

View options