User interface language: English | Español

Date May 2019 Marks available 7 Reference code 19M.1.AHL.TZ2.H_7
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Solve Question number H_7 Adapted from N/A

Question

Solve the simultaneous equations

log26x=1+2log2ylog26x=1+2log2y

1+log6x=log6(15y25)1+log6x=log6(15y25).

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of at least one “log rule” applied correctly for the first equation       M1

log26x=log22+2log2ylog26x=log22+2log2y

=log22+log2y2=log22+log2y2

=log2(2y2)=log2(2y2)

6x=2y26x=2y2       A1

use of at least one “log rule” applied correctly for the second equation       M1

log6(15y25)=1+log6xlog6(15y25)=1+log6x

=log66+log6x=log66+log6x

=log66x=log66x

15y25=6x15y25=6x       A1

attempt to eliminate xx (or yy) from their two equations       M1

2y2=15y252y2=15y25

2y215y+25=02y215y+25=0

(2y5)(y5)=0(2y5)(y5)=0

x=2512,y=52,x=2512,y=52,       A1

or x=253,y=5x=253,y=5       A1

Note: xx, yy values do not have to be “paired” to gain either of the final two A marks.

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » SL 1.5—Intro to logs
Topic 1—Number and algebra » SL 1.7—Laws of exponents and logs
Topic 1—Number and algebra

View options