User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.2.AHL.TZ0.H_4
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Calculate Question number H_4 Adapted from N/A

Question

The following shape consists of three arcs of a circle, each with centre at the opposite vertex of an equilateral triangle as shown in the diagram.

For this shape, calculate

the perimeter.

[2]
a.

the area.

[5]
b.

Markscheme

each arc has length rθ=6×π3=2π(=6.283)rθ=6×π3=2π(=6.283)       (M1)

perimeter is therefore 6π(=18.8)6π(=18.8) (cm)        A1

[2 marks]

a.

area of sector, ss, is 12r2θ=18×π3=6π(=18.84)12r2θ=18×π3=6π(=18.84)       (A1)

area of triangle, tt, is 12×6×33=93(=15.58)12×6×33=93(=15.58)       (M1)(A1)

Note: area of segment, kk, is 3.261… implies area of triangle

finding 3s2t3s2t or 3k+t3k+t or similar

area =3s2t=18π183(=25.4)=3s2t=18π183(=25.4) (cm2)       (M1)A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.4—Circle: radians, arcs, sectors
Show 57 related questions
Topic 3— Geometry and trigonometry

View options