User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.AHL.TZ2.H_4
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number H_4 Adapted from N/A

Question

Consider the following diagram.

The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].

Find AM.

[3]
a.i.

Find  A M P in radians.

[2]
a.ii.

Find the area of the shaded region.

[3]
b.

Markscheme

METHOD 1

PC  = 3 2 or 0.8660       (M1)

PM  = 1 2 PC  = 3 4 or 0.4330     (A1)

AM  = 1 4 + 3 16

= 7 4 or 0.661 (m)     A1

 

METHOD 2

using the cosine rule

AM2  = 1 2 + ( 3 4 ) 2 2 × 3 4 × cos ( 30 )       M1A1

AM = 7 4 or 0.661 (m)     A1

[3 marks]

a.i.

tan ( A M P = 2 3  or equivalent      (M1)

= 0.857      A1

[2 marks]

a.ii.

EITHER

1 2 A M 2 ( 2 A M P sin ( 2 A M P ) )      (M1)A1

OR

1 2 A M 2 × 2 A M P = 3 8      (M1)A1

= 0.158(m2)      A1

Note: Award M1 for attempting to calculate area of a sector minus area of a triangle.

[3 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.4—Circle: radians, arcs, sectors
Show 57 related questions
Topic 3— Geometry and trigonometry

View options