User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.AHL.TZ2.H_4
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number H_4 Adapted from N/A

Question

Consider the following diagram.

The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].

Find AM.

[3]
a.i.

Find AMPAMP in radians.

[2]
a.ii.

Find the area of the shaded region.

[3]
b.

Markscheme

METHOD 1

PC =32=32 or 0.8660       (M1)

PM =12=12PC =34=34 or 0.4330     (A1)

AM =14+316=14+316

=74=74 or 0.661 (m)     A1

 

METHOD 2

using the cosine rule

AM2 =12+(34)22×34×cos(30)=12+(34)22×34×cos(30)      M1A1

AM =74=74 or 0.661 (m)     A1

[3 marks]

a.i.

tan (AMPAMP=23=23 or equivalent      (M1)

= 0.857      A1

[2 marks]

a.ii.

EITHER

12AM2(2AMPsin(2AMP))12AM2(2AMPsin(2AMP))     (M1)A1

OR

12AM2×2AMP=3812AM2×2AMP=38     (M1)A1

= 0.158(m2)      A1

Note: Award M1 for attempting to calculate area of a sector minus area of a triangle.

[3 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.4—Circle: radians, arcs, sectors
Show 57 related questions
Topic 3— Geometry and trigonometry

View options