DP Mathematics HL Questionbank

1.7
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ1.11c: Let...
- 18M.1.hl.TZ1.11a.ii: Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.
- 18M.1.hl.TZ1.11a.i: Express w2 and w3 in modulus-argument form.
- 16M.1.hl.TZ2.12c: Write down the roots of the equation z7−1=0, z∈C in terms of...
- 16M.1.hl.TZ2.12b: (i) Expand (w−1)(1+w+w2+w3+w4+w5+w6). (ii) Hence deduce...
- 16M.1.hl.TZ2.12a: Verify that w is a root of the equation z7−1=0, z∈C.
- 16M.1.hl.TZ1.12a: Use de Moivre’s theorem to find the value of...
- 16N.1.hl.TZ0.12a: Determine the value of (i) 1+ω+ω2; (ii) ...
- 17N.1.hl.TZ0.8: Determine the roots of the equation (z+2i)3=216i,...
- 17M.1.hl.TZ2.11c.ii: Hence find the cube roots of z in modulus-argument form.
- 17M.1.hl.TZ1.2b: Find the smallest positive integer value of n, such that wn is a real number.
- 15N.1.hl.TZ0.11b: Consider the complex numbers z1=1+i and...
- 15N.1.hl.TZ0.11a: Solve the equation z3=8i, z∈C giving your answers in the...
- 12M.1.hl.TZ2.12A.b: Hence find the two square roots of −5+12i .
- 12M.1.hl.TZ2.12A.d: Hence write down the two square roots of −5−12i .
- 12N.1.hl.TZ0.10c: Let z=rcisθ , where r∈R+ and...
- 12N.1.hl.TZ0.10b: (i) Write z2 in modulus-argument form. (ii) Hence solve the equation...
- 12N.1.hl.TZ0.10d: Find the smallest positive value of n for which...
- 08M.2.hl.TZ1.14: z1=(1+i√3)m and z2=(1−i)n . (a) ...
- 08M.1.hl.TZ2.14: Let w=cos2π5+isin2π5. (a) Show that w is a...
- 08N.1.hl.TZ0.13Part A: (a) Use de Moivre’s theorem to find the roots of the equation z4=1−i...
- 09M.1.hl.TZ2.12: The complex number z is defined as z=cosθ+isinθ . (a) State...
- 09N.1.hl.TZ0.13b: Let w=cosθ+isinθ . (i) Show that...
- SPNone.2.hl.TZ0.4b: Find the cube root of z which lies in the first quadrant of the Argand diagram, giving your...
- SPNone.2.hl.TZ0.4c: Find the smallest positive integer n for which zn is a positive real number.
- 13M.1.hl.TZ1.1b: Given...
- 10M.2.hl.TZ1.4: (a) Solve the equation z3=−2+2i, giving your answers in modulus-argument...
- 13M.1.hl.TZ2.13a: (i) Express each of the complex numbers...
- 13M.1.hl.TZ2.13b: (i) State the solutions of the equation z7=1 for z∈C, giving them...
- 11N.1.hl.TZ0.2: Find the cube roots of i in the form a+bi, where a, b∈R.
- 11M.1.hl.TZ1.13b: Hence show that cos3θ=4cos3θ−3cosθ .
- 11M.1.hl.TZ1.13c: Similarly show that cos5θ=16cos5θ−20cos3θ+5cosθ .
- 13N.1.hl.TZ0.12a: Use De Moivre’s theorem to show that...
- 15M.1.hl.TZ2.7a: Find three distinct roots of the equation 8z3+27=0, z∈C giving...
- 15M.2.hl.TZ1.12b: Find the value of r and the value of α.
- 15M.2.hl.TZ1.12a: (i) Use the binomial theorem to expand (cosθ+isinθ)5. (ii)...
- 14N.1.hl.TZ0.13a: (i) Show that...
Sub sections and their related questions
Powers of complex numbers: de Moivre’s theorem.
- 12M.1.hl.TZ2.12A.b: Hence find the two square roots of −5+12i .
- 12M.1.hl.TZ2.12A.d: Hence write down the two square roots of −5−12i .
- 12N.1.hl.TZ0.10b: (i) Write z2 in modulus-argument form. (ii) Hence solve the equation...
- 12N.1.hl.TZ0.10c: Let z=rcisθ , where r∈R+ and...
- 12N.1.hl.TZ0.10d: Find the smallest positive value of n for which...
- 08M.2.hl.TZ1.14: z1=(1+i√3)m and z2=(1−i)n . (a) ...
- 08M.1.hl.TZ2.14: Let w=cos2π5+isin2π5. (a) Show that w is a...
- 08N.1.hl.TZ0.13Part A: (a) Use de Moivre’s theorem to find the roots of the equation z4=1−i...
- 09M.1.hl.TZ2.12: The complex number z is defined as z=cosθ+isinθ . (a) State...
- 09N.1.hl.TZ0.13b: Let w=cosθ+isinθ . (i) Show that...
- SPNone.2.hl.TZ0.4b: Find the cube root of z which lies in the first quadrant of the Argand diagram, giving your...
- SPNone.2.hl.TZ0.4c: Find the smallest positive integer n for which zn is a positive real number.
- 13M.1.hl.TZ1.1b: Given...
- 13M.1.hl.TZ2.13a: (i) Express each of the complex numbers...
- 13M.1.hl.TZ2.13b: (i) State the solutions of the equation z7=1 for z∈C, giving them...
- 11N.1.hl.TZ0.2: Find the cube roots of i in the form a+bi, where a, b∈R.
- 11M.1.hl.TZ1.13b: Hence show that cos3θ=4cos3θ−3cosθ .
- 11M.1.hl.TZ1.13c: Similarly show that cos5θ=16cos5θ−20cos3θ+5cosθ .
- 13N.1.hl.TZ0.12a: Use De Moivre’s theorem to show that...
- 14N.1.hl.TZ0.13a: (i) Show that...
- 15M.2.hl.TZ1.12a: (i) Use the binomial theorem to expand (cosθ+isinθ)5. (ii)...
- 15N.1.hl.TZ0.11a: Solve the equation z3=8i, z∈C giving your answers in the...
- 15N.1.hl.TZ0.11b: Consider the complex numbers z1=1+i and...
- 16M.1.hl.TZ2.12a: Verify that w is a root of the equation z7−1=0, z∈C.
- 16M.1.hl.TZ2.12b: (i) Expand (w−1)(1+w+w2+w3+w4+w5+w6). (ii) Hence deduce...
- 16M.1.hl.TZ2.12c: Write down the roots of the equation z7−1=0, z∈C in terms of...
- 16M.1.hl.TZ1.12a: Use de Moivre’s theorem to find the value of...
- 16N.1.hl.TZ0.12a: Determine the value of (i) 1+ω+ω2; (ii) ...
- 17M.1.hl.TZ2.11c.ii: Hence find the cube roots of z in modulus-argument form.
- 17N.1.hl.TZ0.8: Determine the roots of the equation (z+2i)3=216i,...
- 18M.1.hl.TZ1.11a.i: Express w2 and w3 in modulus-argument form.
- 18M.1.hl.TZ1.11a.ii: Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.
- 18M.1.hl.TZ1.11c: Let...
nth roots of a complex number.
- 12M.1.hl.TZ2.12A.b: Hence find the two square roots of −5+12i .
- 12M.1.hl.TZ2.12A.d: Hence write down the two square roots of −5−12i .
- 12N.1.hl.TZ0.10b: (i) Write z2 in modulus-argument form. (ii) Hence solve the equation...
- 12N.1.hl.TZ0.10c: Let z=rcisθ , where r∈R+ and...
- 12N.1.hl.TZ0.10d: Find the smallest positive value of n for which...
- 08N.1.hl.TZ0.13Part A: (a) Use de Moivre’s theorem to find the roots of the equation z4=1−i...
- 10M.2.hl.TZ1.4: (a) Solve the equation z3=−2+2i, giving your answers in modulus-argument...
- 15M.1.hl.TZ2.7a: Find three distinct roots of the equation 8z3+27=0, z∈C giving...
- 15M.2.hl.TZ1.12b: Find the value of r and the value of α.
- 15N.1.hl.TZ0.11a: Solve the equation z3=8i, z∈C giving your answers in the...
- 16M.1.hl.TZ2.12a: Verify that w is a root of the equation z7−1=0, z∈C.
- 16M.1.hl.TZ2.12b: (i) Expand (w−1)(1+w+w2+w3+w4+w5+w6). (ii) Hence deduce...
- 16M.1.hl.TZ2.12c: Write down the roots of the equation z7−1=0, z∈C in terms of...
- 16N.1.hl.TZ0.12a: Determine the value of (i) 1+ω+ω2; (ii) ...
- 17N.1.hl.TZ0.8: Determine the roots of the equation (z+2i)3=216i,...