User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ1.2
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

Consider the complex numbers \({z_1} = 1 + \sqrt 3 {\text{i, }}{z_2} = 1 + {\text{i}}\) and \(w = \frac{{{z_1}}}{{{z_2}}}\).

By expressing \({z_1}\) and \({z_2}\) in modulus-argument form write down the modulus of \(w\);

[3]
a.i.

By expressing \({z_1}\) and \({z_2}\) in modulus-argument form write down the argument of \(w\).

[1]
a.ii.

Find the smallest positive integer value of \(n\), such that \({w^n}\) is a real number.

[2]
b.

Markscheme

\({z_1} = 2{\text{cis}}\left( {\frac{\pi }{3}} \right)\) and \({z_2} = \sqrt 2 {\text{cis}}\left( {\frac{\pi }{4}} \right)\)     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

\(\left| w \right| = \sqrt 2 \)     A1

[3 marks]

a.i.

\({z_1} = 2{\text{cis}}\left( {\frac{\pi }{3}} \right)\) and \({z_2} = \sqrt 2 {\text{cis}}\left( {\frac{\pi }{4}} \right)\)     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

\(\arg w = \frac{\pi }{{12}}\)     A1

 

Notes:     Allow FT from incorrect answers for \({z_1}\) and \({z_2}\) in modulus-argument form.

 

[1 mark]

a.ii.

EITHER

\(\sin \left( {\frac{{\pi n}}{{12}}} \right) = 0\)     (M1)

OR

\(\arg ({w^n}) = \pi \)     (M1)

\(\frac{{n\pi }}{{12}} = \pi \)

THEN

\(\therefore n = 12\)     A1

[2 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.7
Show 28 related questions

View options