Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ1.2
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

Consider the complex numbers z1=1+3i, z2=1+i and w=z1z2.

By expressing z1 and z2 in modulus-argument form write down the modulus of w;

[3]
a.i.

By expressing z1 and z2 in modulus-argument form write down the argument of w.

[1]
a.ii.

Find the smallest positive integer value of n, such that wn is a real number.

[2]
b.

Markscheme

z1=2cis(π3) and z2=2cis(π4)     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

|w|=2     A1

[3 marks]

a.i.

z1=2cis(π3) and z2=2cis(π4)     A1A1

 

Note:     Award A1A0 for correct moduli and arguments found, but not written in mod-arg form.

 

argw=π12     A1

 

Notes:     Allow FT from incorrect answers for z1 and z2 in modulus-argument form.

 

[1 mark]

a.ii.

EITHER

sin(πn12)=0     (M1)

OR

arg(wn)=π     (M1)

nπ12=π

THEN

n=12     A1

[2 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.7
Show 28 related questions

View options