User interface language: English | Español

Date May 2008 Marks available 12 Reference code 08M.1.hl.TZ2.14
Level HL only Paper 1 Time zone TZ2
Command term Show that and Hence Question number 14 Adapted from N/A

Question

Let \(w = \cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}\).

(a)     Show that w is a root of the equation \({z^5} - 1 = 0\) .

(b)     Show that \((w - 1)({w^4} + {w^3} + {w^2} + w + 1) = {w^5} - 1\) and deduce that \({w^4} + {w^3} + {w^2} + w + 1 = 0\).

(c)     Hence show that \(\cos \frac{{2\pi }}{5} + \cos \frac{{4\pi }}{5} = - \frac{1}{2}\).

Markscheme

(a)     EITHER

\({w^5} = {\left( {\cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}} \right)^5}\)     (M1)

\( = \cos 2\pi + {\text{i}}\sin 2\pi \)     A1

\( = 1\)     A1

Hence w is a root of \({z^5} - 1 = 0\)     AG

OR

Solving \({z^5} = 1\)     (M1)

\(z = \cos \frac{{2\pi }}{5}n + {\text{i}}\sin \frac{{2\pi }}{5}n{\text{ ,}}\,\,\,\,\,n = {\text{0, 1, 2, 3, 4}}\).     A1

\(n = 1{\text{ gives }}\cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}\) which is w     A1

[3 marks]

 

(b)     \((w - 1)(1 + w + {w^2} + {w^3} + {w^4}) = w + {w^2} + {w^3} + {w^4} + {w^5} - 1 - w - {w^2} - {w^3} - {w^4}\)     M1

\( = {w^5} - 1\)     A1

Since \({w^5} - 1 = 0\) and \(w \ne 1{\text{ , }}{w^4} + {w^3} + {w^2} + w + 1 = 0\).     R1

[3 marks]

 

(c)     \(1 + w + {w^2} + {w^3} + {w^4} = \)

\(1 + \cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5} + {\left( {\cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}} \right)^2} + {\left( {\cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}} \right)^3} + {\left( {\cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5}} \right)^4}\)     (M1)

\( = 1 + \cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5} + \cos \frac{{4\pi }}{5} + {\text{i}}\sin \frac{{4\pi }}{5} + \cos \frac{{6\pi }}{5} + {\text{i}}\sin \frac{{6\pi }}{5} + \cos \frac{{8\pi }}{5} + {\text{i}}\sin \frac{{8\pi }}{5}\)     M1

\( = 1 + \cos \frac{{2\pi }}{5} + {\text{i}}\sin \frac{{2\pi }}{5} + \cos \frac{{4\pi }}{5} + {\text{i}}\sin \frac{{4\pi }}{5} + \cos \frac{{4\pi }}{5} - {\text{i}}\sin \frac{{4\pi }}{5} + \cos \frac{{2\pi }}{5} - {\text{i}}\sin \frac{{2\pi }}{5}\)     M1A1A1

Note: Award M1 for attempting to replace \({6\pi }\) and \({8\pi }\) by \({4\pi }\) and \({2\pi }\) .

Award A1 for correct cosine terms and A1 for correct sine terms.

 

\( = 1 + 2\cos \frac{{4\pi }}{5} + 2\cos \frac{{2\pi }}{5} = 0\)     A1

Note: Correct methods involving equating real parts, use of conjugates or reciprocals are also accepted.

 

\(\cos \frac{{2\pi }}{5} + \cos \frac{{4\pi }}{5} = - \frac{1}{2}\)     AG

[6 marks]

Note: Use of cis notation is acceptable throughout this question.

 

Total [12 marks]

Examiners report

Parts (a) and (b) were generally well done, although very few stated that \(w \ne 1\) in (b). Part (c), the last question on the paper was challenging. Those candidates who gained some credit correctly focussed on the real part of the identity and realise that different cosine were related.

Syllabus sections

Topic 1 - Core: Algebra » 1.7 » Powers of complex numbers: de Moivre’s theorem.
Show 24 related questions

View options