Date | November 2009 | Marks available | 14 | Reference code | 09N.1.hl.TZ0.13 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that and Solve | Question number | 13 | Adapted from | N/A |
Question
Let z=x+iy be any non-zero complex number.
(i) Express 1z in the form u+iv .
(ii) If z+1z=k , k∈R , show that either y = 0 or x2+y2=1.
(iii) Show that if x2+y2=1 then |k|⩽2 .
Let w=cosθ+isinθ .
(i) Show that wn+w−n=2cosnθ , n∈Z .
(ii) Solve the equation 3w2−w+2−w−1+3w−2=0, giving the roots in the form x+iy .
Markscheme
(i) 1z=1x+iy×x−iyx−iy=xx2+y2−iyx2+y2 (M1)A1
(ii) z+1z=x+xx2+y2+i(y−yx2+y2)=k (A1)
for k to be real, y−yx2+y2=0⇒y(x2+y2−1)=0 M1A1
hence, y=0 or x2+y2−1=0⇒x2+y2=1 AG
(iii) when x2+y2=1, z+1z=2x (M1)A1
|x|⩽1 R1
⇒|k|⩽2 AG
[8 marks]
(i) w−n=cos(−nθ)+isin(−nθ)=cosnθ−isinnθ M1A1
⇒wn+w−n=(cosnθ+isinnθ)+(cosnθ−isinnθ)=2cosnθ M1AG
(ii) (rearranging)
3(w2+w−2)−(w+w−1)+2=0 (M1)
⇒3(2cos2θ)−2cosθ+2=0 A1
⇒2(3cos2θ−cosθ+1)=0
⇒3(2cos2θ−1)−cosθ+1=0 M1
⇒6cos2θ−cosθ−2=0 A1
⇒(3cosθ−2)(2cosθ+1)=0 M1
∴cosθ=23, cosθ=−12 A1A1
cosθ=23⇒sinθ=±√53 A1
cosθ=−12⇒sinθ=±√32 A1
∴w=23±i√53,−12±i√32 A1A1
Note: Allow FT from incorrect cosθ and/or sinθ .
[14 marks]
Examiners report
A large number of candidates did not attempt part (a), or did so unsuccessfully.
It was obvious that many candidates had been trained to answer questions of the type in part (b), and hence of those who attempted it, many did so successfully. Quite a few however failed to find all solutions.