Date | May 2015 | Marks available | 6 | Reference code | 15M.1.hl.TZ2.7 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find and Give | Question number | 7 | Adapted from | N/A |
Question
Find three distinct roots of the equation 8z3+27=0, z∈C giving your answers in modulus-argument form.
The roots are represented by the vertices of a triangle in an Argand diagram.
Show that the area of the triangle is 27√316.
Markscheme
METHOD 1
z3=−278=278(cosπ+isinπ) M1(A1)
=278(cos(π+2nπ)+isin(π+2nπ)) (A1)
z=32(cos(π+2nπ3)+isin(π+2nπ3)) M1
z1=32(cosπ3+isinπ3),
z2=32(cosπ+isinπ),
z3=32(cos5π3+isin5π3). A2
Note: Accept −π3 as the argument for z3.
Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian (reiθ) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
METHOD 2
8z3+27=0
⇒z=−32 so (2z+3) is a factor
Attempt to use long division or factor theorem: M1
⇒8z3+27=(2z+3)(4z2−6z+9)
⇒4z2−6z+9=0 A1
Attempt to solve quadratic: M1
z=3±3√3i4 A1
z1=32(cosπ3+isinπ3),
z2=32(cosπ+isinπ),
z3=32(cos5π3+isin5π3). A2
Note: Accept −π3 as the argument for z3.
Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian (reiθ) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
METHOD 3
8z3+27=0
Substitute z=x+iy M1
8(x3+3ix2y−3xy2−iy3)+27=0
⇒8x3−24xy2+27=0 and 24x2y−8y3=0 A1
Attempt to solve simultaneously: M1
8y(3x2−y2)=0
y=0, y=x√3, y=−x√3
⇒(x=−32, y=0), x=34, y=±3√34 A1
z1=32(cosπ3+isinπ3),
z2=32(cosπ+isinπ),
z3=32(cos5π3+isin5π3). A2
Note: Accept −π3 as the argument for z3.
Note: Award A1 for 2 correct roots.
Note: Allow solutions expressed in Eulerian (reiθ) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
[6 marks]
EITHER
Valid attempt to use area=3(12absinC) M1
=3×12×32×32×√32 A1A1
Note: Award A1 for correct sides, A1 for correct sin C.
OR
Valid attempt to use area=12base×height M1
area=12×(34+32)×6√34 A1A1
Note: A1 for correct height, A1 for correct base.
THEN
=27√316 AG
[3 marks]
Total [9 marks]