Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 6 Reference code 15M.1.hl.TZ2.7
Level HL only Paper 1 Time zone TZ2
Command term Find and Give Question number 7 Adapted from N/A

Question

Find three distinct roots of the equation 8z3+27=0, zC giving your answers in modulus-argument form.

[6]
a.

The roots are represented by the vertices of a triangle in an Argand diagram.

Show that the area of the triangle is 27316.

[3]
b.

Markscheme

METHOD 1

z3=278=278(cosπ+isinπ)     M1(A1)

=278(cos(π+2nπ)+isin(π+2nπ))     (A1)

z=32(cos(π+2nπ3)+isin(π+2nπ3))     M1

z1=32(cosπ3+isinπ3),

z2=32(cosπ+isinπ),

z3=32(cos5π3+isin5π3).     A2

 

Note:     Accept π3 as the argument for z3.

 

Note:     Award A1 for 2 correct roots.

 

Note:     Allow solutions expressed in Eulerian (reiθ) form.

 

Note:     Allow use of degrees in mod-arg (r-cis) form only.

 

METHOD 2

8z3+27=0

z=32 so (2z+3) is a factor

Attempt to use long division or factor theorem:     M1

8z3+27=(2z+3)(4z26z+9)

4z26z+9=0     A1

Attempt to solve quadratic:     M1

z=3±33i4     A1

z1=32(cosπ3+isinπ3),

z2=32(cosπ+isinπ),

z3=32(cos5π3+isin5π3).     A2

 

Note:     Accept π3 as the argument for z3.

 

Note:     Award A1 for 2 correct roots.

 

Note:     Allow solutions expressed in Eulerian (reiθ) form.

 

Note:     Allow use of degrees in mod-arg (r-cis) form only.

 

METHOD 3

8z3+27=0

Substitute z=x+iy     M1

8(x3+3ix2y3xy2iy3)+27=0

8x324xy2+27=0 and 24x2y8y3=0     A1

Attempt to solve simultaneously:     M1

8y(3x2y2)=0

y=0, y=x3, y=x3

(x=32, y=0), x=34, y=±334     A1

z1=32(cosπ3+isinπ3),

z2=32(cosπ+isinπ),

z3=32(cos5π3+isin5π3).     A2

 

Note:     Accept π3 as the argument for z3.

 

Note:     Award A1 for 2 correct roots.

 

Note:     Allow solutions expressed in Eulerian (reiθ) form.

 

Note:     Allow use of degrees in mod-arg (r-cis) form only.

[6 marks]

a.

EITHER

Valid attempt to use area=3(12absinC)     M1

=3×12×32×32×32     A1A1

 

Note:     Award A1 for correct sides, A1 for correct sin C.

 

OR

Valid attempt to use area=12base×height     M1

area=12×(34+32)×634     A1A1

 

Note:     A1 for correct height, A1 for correct base.

 

THEN

=27316     AG

[3 marks]

Total [9 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.7 » nth roots of a complex number.

View options