Date | May 2015 | Marks available | 6 | Reference code | 15M.1.hl.TZ2.7 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find and Give | Question number | 7 | Adapted from | N/A |
Question
Find three distinct roots of the equation \(8{z^3} + 27 = 0,{\text{ }}z \in \mathbb{C}\) giving your answers in modulus-argument form.
The roots are represented by the vertices of a triangle in an Argand diagram.
Show that the area of the triangle is \(\frac{{27\sqrt 3 }}{{16}}\).
Markscheme
METHOD 1
\({z^3} = - \frac{{27}}{8} = \frac{{27}}{8}(\cos \pi + {\text{i}}\sin \pi )\) M1(A1)
\( = \frac{{27}}{8}\left( {\cos (\pi + 2n\pi ) + {\text{i}}\sin (\pi + 2n\pi )} \right)\) (A1)
\(z = \frac{3}{2}\left( {\cos \left( {\frac{{\pi + 2n\pi }}{3}} \right) + {\text{i}}\sin \left( {\frac{{\pi + 2n\pi }}{3}} \right)} \right)\) M1
\({z_1} = \frac{3}{2}\left( {\cos \frac{\pi }{3} + {\text{i}}\sin \frac{\pi }{3}} \right)\),
\({z_2} = \frac{3}{2}(\cos \pi + {\text{i}}\sin \pi )\),
\({z_3} = \frac{3}{2}\left( {\cos \frac{{5\pi }}{3} + {\text{i}}\sin \frac{{5\pi }}{3}} \right)\). A2
Note: Accept \( - \frac{\pi }{3}\) as the argument for \({z_3}\).
Note: Award A1 for \(2\) correct roots.
Note: Allow solutions expressed in Eulerian \((r{e^{{\text{i}}\theta }})\) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
METHOD 2
\(8{z^3} + 27 = 0\)
\( \Rightarrow z = - \frac{3}{2}\) so \((2z + 3)\) is a factor
Attempt to use long division or factor theorem: M1
\( \Rightarrow 8{z^3} + 27 = (2z + 3)(4{z^2} - 6z + 9)\)
\( \Rightarrow 4{z^2} - 6z + 9 = 0\) A1
Attempt to solve quadratic: M1
\(z = \frac{{3 \pm 3\sqrt 3 {\text{i}}}}{4}\) A1
\({z_1} = \frac{3}{2}\left( {\cos \frac{\pi }{3} + {\text{i}}\sin \frac{\pi }{3}} \right)\),
\({z_2} = \frac{3}{2}(\cos \pi + {\text{i}}\sin \pi )\),
\({z_3} = \frac{3}{2}\left( {\cos \frac{{5\pi }}{3} + {\text{i}}\sin \frac{{5\pi }}{3}} \right)\). A2
Note: Accept \( - \frac{\pi }{3}\) as the argument for \({z_3}\).
Note: Award A1 for \(2\) correct roots.
Note: Allow solutions expressed in Eulerian \((r{e^{{\text{i}}\theta }})\) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
METHOD 3
\(8{z^3} + 27 = 0\)
Substitute \(z = x + {\text{i}}y\) M1
\(8({x^3} + 3{\text{i}}{x^2}y - 3x{y^2} - {\text{i}}{y^3}) + 27 = 0\)
\( \Rightarrow 8{x^3} - 24x{y^2} + 27 = 0\) and \(24{x^2}y - 8{y^3} = 0\) A1
Attempt to solve simultaneously: M1
\(8y(3{x^2} - {y^2}) = 0\)
\(y = 0,{\text{ }}y = x\sqrt 3 ,{\text{ }}y = - x\sqrt 3 \)
\( \Rightarrow \left( {x = - \frac{3}{2},{\text{ }}y = 0} \right),{\text{ }}x = \frac{3}{4},{\text{ }}y = \pm \frac{{3\sqrt 3 }}{4}\) A1
\({z_1} = \frac{3}{2}\left( {\cos \frac{\pi }{3} + {\text{i}}\sin \frac{\pi }{3}} \right)\),
\({z_2} = \frac{3}{2}(\cos \pi + {\text{i}}\sin \pi )\),
\({z_3} = \frac{3}{2}\left( {\cos \frac{{5\pi }}{3} + {\text{i}}\sin \frac{{5\pi }}{3}} \right)\). A2
Note: Accept \( - \frac{\pi }{3}\) as the argument for \({z_3}\).
Note: Award A1 for \(2\) correct roots.
Note: Allow solutions expressed in Eulerian \((r{e^{{\text{i}}\theta }})\) form.
Note: Allow use of degrees in mod-arg (r-cis) form only.
[6 marks]
EITHER
Valid attempt to use \({\text{area}} = 3\left( {\frac{1}{2}ab\sin C} \right)\) M1
\( = 3 \times \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2} \times \frac{{\sqrt 3 }}{2}\) A1A1
Note: Award A1 for correct sides, A1 for correct sin \(C\).
OR
Valid attempt to use \({\text{area}} = \frac{1}{2}{\text{base}} \times {\text{height}}\) M1
\({\text{area}} = \frac{1}{2} \times \left( {\frac{3}{4} + \frac{3}{2}} \right) \times \frac{{6\sqrt 3 }}{4}\) A1A1
Note: A1 for correct height, A1 for correct base.
THEN
\( = \frac{{27\sqrt 3 }}{{16}}\) AG
[3 marks]
Total [9 marks]