Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.1.hl.TZ1.11
Level HL only Paper 1 Time zone TZ1
Command term Show that Question number 11 Adapted from N/A

Question

Consider w=2(cosπ3+isinπ3)

These four points form the vertices of a quadrilateral, Q.

Express w2 and w3 in modulus-argument form.

[3]
a.i.

Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.

[2]
a.ii.

Show that the area of the quadrilateral Q is 2132.

[3]
b.

Let z=2(cosπn+isinπn),nZ+. The points represented on an Argand diagram by z0,z1,z2,,zn form the vertices of a polygon Pn.

Show that the area of the polygon Pn can be expressed in the form a(bn1)sinπn, where a,bR.

[6]
c.

Markscheme

w2=4cis(2π3);w3=8cis(π)     (M1)A1A1

Note: Accept Euler form.

Note: M1 can be awarded for either both correct moduli or both correct arguments.

Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.

[3 marks]

a.i.

     A1A1

[2 marks]

a.ii.

use of area = 12absinC     M1

12×1×2×sinπ3+12×2×4×sinπ3+12×4×8×sinπ3      A1A1

Note: Award A1 for C=π3, A1 for correct moduli.

=2132     AG

Note: Other methods of splitting the area may receive full marks.

[3 marks]

b.

12×20×21×sinπn+12×21×22×sinπn+12×22×23×sinπn++12×2n1×2n×sinπn      M1A1

Note: Award M1 for powers of 2, A1 for any correct expression including both the first and last term.

=sinπn×(20+22+24++2n2)

identifying a geometric series with common ratio 22(= 4)     (M1)A1

=122n14×sinπn     M1

Note: Award M1 for use of formula for sum of geometric series.

=13(4n1)sinπn     A1

[6 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.7 » Powers of complex numbers: de Moivre’s theorem.
Show 32 related questions

View options