Date | November 2017 | Marks available | 7 | Reference code | 17N.1.hl.TZ0.8 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 8 | Adapted from | N/A |
Question
Determine the roots of the equation (z+2i)3=216i, z∈C, giving the answers in the form z=a√3+bi where a, b∈Z.
Markscheme
METHOD 1
216i=216(cosπ2+isinπ2) A1
z+2i=3√216(cos(π2+2πk)=isin(π2+2πk))13 (M1)
z+2i=6(cos(π6+2πk3)+isin(π6+2πk3)) A1
z1+2i=6(cosπ6+isinπ6)=6(√32+i2)=3√3+3i
z2+2i=6(cos5π6+isin5π6)=6(−√32+i2)=−3√3+3i
z3+2i=6(cos3π2+isin3π2)=−6i A2
Note: Award A1A0 for one correct root.
so roots are z1=3√3+i, z2=−3√3+i and z3=−8i M1A1
Note: Award M1 for subtracting 2i from their three roots.
METHOD 2
(a√3+(b+2)i)3=216i
(a√3)3+3(a√3)2(b+2)i−3(a√3)(b+2)2−i(b+2)3=216i M1A1
(a√3)3−3(a√3)(b+2)2+i(3(a√3)2(b+2)−(b+2)3)=216i
(a√3)3−3(a√3)(b+2)2=0 and 3(a√3)2(b+2)−(b+2)3=216 M1A1
a(a2−(b+2)2)=0 and 9a2(b+2)−(b+2)3=216
a=0 or a2=(b+2)2
if a=0, −(b+2)3=216⇒b+2=−6
∴b=−8 A1
(a, b)=(0, −8)
if a2=(b+2)2, 9(b+2)2(b+2)−(b+2)3=216
8(b+2)3=216
(b+2)3=27
b+2=3
b=1
∴a2=9⇒a=±3
∴(a, b)=(±3, 1) A1A1
so roots are z1=3√3+i, z2=−3√3+i and z3=−8i
METHOD 3
(z+2i)3−(−6i)3=0
attempt to factorise: M1
((z+2i)−(−6i))((z+2i)2+(z+2i)(−6i)+(−6i)2)=0 A1
(z+8i)(z2−2iz−28)=0 A1
z+8i=0⇒z=−8i A1
z2−2iz−28=0⇒z=2i±√−4−(4×1×−28)2 M1
z=2i±√1082
z=2i±6√32
z=i±3√3 A1A1
Special Case:
Note: If a candidate recognises that 3√216i=−6i (anywhere seen), and makes no valid progress in finding three roots, award A1 only.
[7 marks]