Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 7 Reference code 17N.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 8 Adapted from N/A

Question

Determine the roots of the equation (z+2i)3=216i, zC, giving the answers in the form z=a3+bi where a, bZ.

Markscheme

METHOD 1

216i=216(cosπ2+isinπ2)     A1

z+2i=3216(cos(π2+2πk)=isin(π2+2πk))13     (M1)

z+2i=6(cos(π6+2πk3)+isin(π6+2πk3))     A1

z1+2i=6(cosπ6+isinπ6)=6(32+i2)=33+3i

z2+2i=6(cos5π6+isin5π6)=6(32+i2)=33+3i

z3+2i=6(cos3π2+isin3π2)=6i     A2

 

Note:     Award A1A0 for one correct root.

 

so roots are z1=33+i, z2=33+i and z3=8i     M1A1

 

Note:     Award M1 for subtracting 2i from their three roots.

 

METHOD 2

(a3+(b+2)i)3=216i

(a3)3+3(a3)2(b+2)i3(a3)(b+2)2i(b+2)3=216i     M1A1

(a3)33(a3)(b+2)2+i(3(a3)2(b+2)(b+2)3)=216i

(a3)33(a3)(b+2)2=0 and 3(a3)2(b+2)(b+2)3=216     M1A1

a(a2(b+2)2)=0 and 9a2(b+2)(b+2)3=216

a=0 or a2=(b+2)2

if a=0, (b+2)3=216b+2=6

b=8     A1

(a, b)=(0, 8)

if a2=(b+2)2, 9(b+2)2(b+2)(b+2)3=216

8(b+2)3=216

(b+2)3=27

b+2=3

b=1

a2=9a=±3

(a, b)=(±3, 1)     A1A1

so roots are z1=33+i, z2=33+i and z3=8i

 

METHOD 3

(z+2i)3(6i)3=0

attempt to factorise:     M1

((z+2i)(6i))((z+2i)2+(z+2i)(6i)+(6i)2)=0     A1

(z+8i)(z22iz28)=0     A1

z+8i=0z=8i     A1

z22iz28=0z=2i±4(4×1×28)2     M1

z=2i±1082

z=2i±632

z=i±33     A1A1

 

Special Case:

Note:     If a candidate recognises that 3216i=6i (anywhere seen), and makes no valid progress in finding three roots, award A1 only.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.7 » Powers of complex numbers: de Moivre’s theorem.
Show 24 related questions

View options