Date | November 2017 | Marks available | 7 | Reference code | 17N.1.hl.TZ0.8 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 8 | Adapted from | N/A |
Question
Determine the roots of the equation \({(z + 2{\text{i}})^3} = 216{\text{i}}\), \(z \in \mathbb{C}\), giving the answers in the form \(z = a\sqrt 3 + b{\text{i}}\) where \(a,{\text{ }}b \in \mathbb{Z}\).
Markscheme
METHOD 1
\(216{\text{i}} = 216\left( {\cos \frac{\pi }{2} + {\text{i}}\sin \frac{\pi }{2}} \right)\) A1
\(z + 2{\text{i}} = \sqrt[3]{{216}}{\left( {\cos \left( {\frac{\pi }{2} + 2\pi k} \right) = {\text{i}}\sin \left( {\frac{\pi }{2} + 2\pi k} \right)} \right)^{\frac{1}{3}}}\) (M1)
\(z + 2{\text{i}} = 6\left( {\cos \left( {\frac{\pi }{6} + \frac{{2\pi k}}{3}} \right) + {\text{i}}\sin \left( {\frac{\pi }{6} + \frac{{2\pi k}}{3}} \right)} \right)\) A1
\({z_1} + 2{\text{i}} = 6\left( {\cos \frac{\pi }{6} + {\text{i}}\sin \frac{\pi }{6}} \right) = 6\left( {\frac{{\sqrt 3 }}{2} + \frac{{\text{i}}}{2}} \right) = 3\sqrt 3 + 3{\text{i}}\)
\({z_2} + 2{\text{i}} = 6\left( {\cos \frac{{5\pi }}{6} + {\text{i}}\sin \frac{{5\pi }}{6}} \right) = 6\left( {\frac{{ - \sqrt 3 }}{2} + \frac{{\text{i}}}{2}} \right) = - 3\sqrt 3 + 3{\text{i}}\)
\({z_3} + 2{\text{i}} = 6\left( {\cos \frac{{3\pi }}{2} + {\text{i}}\sin \frac{{3\pi }}{2}} \right) = - 6{\text{i}}\) A2
Note: Award A1A0 for one correct root.
so roots are \({z_1} = 3\sqrt 3 + {\text{i, }}{z_2} = - 3\sqrt 3 + {\text{i}}\) and \({z_3} = - 8{\text{i}}\) M1A1
Note: Award M1 for subtracting 2i from their three roots.
METHOD 2
\({\left( {a\sqrt 3 + (b + 2){\text{i}}} \right)^3} = 216{\text{i}}\)
\({\left( {a\sqrt 3 } \right)^3} + 3{\left( {a\sqrt 3 } \right)^2}(b + 2){\text{i}} - 3\left( {a\sqrt 3 } \right){(b + 2)^2} - {\text{i}}{(b + 2)^3} = 216{\text{i}}\) M1A1
\({\left( {a\sqrt 3 } \right)^3} - 3\left( {a\sqrt 3 } \right){(b + 2)^2} + {\text{i}}\left( {3{{\left( {a\sqrt 3 } \right)}^2}(b + 2) - {{(b + 2)}^3}} \right) = 216{\text{i}}\)
\({\left( {a\sqrt 3 } \right)^3} - 3\left( {a\sqrt 3 } \right){(b + 2)^2} = 0\) and \(3{\left( {a\sqrt 3 } \right)^2}(b + 2) - {(b + 2)^3} = 216\) M1A1
\(a\left( {{a^2} - {{(b + 2)}^2}} \right) = 0\) and \(9{a^2}(b + 2) - {(b + 2)^3} = 216\)
\(a = 0\) or \({a^2} = {(b + 2)^2}\)
if \(a = 0,{\text{ }} - {(b + 2)^3} = 216 \Rightarrow b + 2 = - 6\)
\(\therefore b = - 8\) A1
\((a,{\text{ }}b) = (0,{\text{ }} - 8)\)
if \({a^2} = {(b + 2)^2},{\text{ }}9{(b + 2)^2}(b + 2) - {(b + 2)^3} = 216\)
\(8{(b + 2)^3} = 216\)
\({(b + 2)^3} = 27\)
\(b + 2 = 3\)
\(b = 1\)
\(\therefore {a^2} = 9 \Rightarrow a = \pm 3\)
\(\therefore (a,{\text{ }}b) = ( \pm 3,{\text{ }}1)\) A1A1
so roots are \({z_1} = 3\sqrt 3 + {\text{i, }}{z_2} = - 3\sqrt 3 + {\text{i}}\) and \({z_3} = - 8{\text{i}}\)
METHOD 3
\({(z + 2{\text{i}})^3} - {( - 6{\text{i}})^3} = 0\)
attempt to factorise: M1
\(\left( {(z + 2{\text{i}}) - ( - 6{\text{i}})} \right)\left( {{{(z + 2{\text{i}})}^2} + (z + 2{\text{i}})( - 6{\text{i}}) + {{( - 6{\text{i}})}^2}} \right) = 0\) A1
\((z + 8{\text{i}})({z^2} - 2{\text{i}}z - 28) = 0\) A1
\(z + 8{\text{i}} = 0 \Rightarrow z = - 8{\text{i}}\) A1
\({z^2} - 2{\text{i}}z - 28 = 0 \Rightarrow z = \frac{{2{\text{i}} \pm \sqrt { - 4 - (4 \times 1 \times - 28)} }}{2}\) M1
\(z = \frac{{2{\text{i}} \pm \sqrt {108} }}{2}\)
\(z = \frac{{2{\text{i}} \pm 6\sqrt 3 }}{2}\)
\(z = {\text{i}} \pm 3\sqrt 3 \) A1A1
Special Case:
Note: If a candidate recognises that \(\sqrt[3]{{216{\text{i}}}} = - 6{\text{i}}\) (anywhere seen), and makes no valid progress in finding three roots, award A1 only.
[7 marks]