User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ2.1
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 1 Adapted from N/A

Question

Consider the complex number \(z = \frac{{2 + 7{\text{i}}}}{{6 + 2{\text{i}}}}\).

Express \(z\) in the form \(a + {\text{i}}b\), where \(a,\,b \in \mathbb{Q}\).

[2]
a.

Find the exact value of the modulus of \(z\).

[2]
b.

Find the argument of \(z\), giving your answer to 4 decimal places.

[2]
c.

Markscheme

\(z = \frac{{\left( {2 + 7{\text{i}}} \right)}}{{\left( {6 + 2{\text{i}}} \right)}} \times \frac{{\left( {6 - 2{\text{i}}} \right)}}{{\left( {6 - 2{\text{i}}} \right)}}\)     (M1)

\( = \frac{{26 + 38{\text{i}}}}{{40}} = \left( {\frac{{13 + 19{\text{i}}}}{{20}} = 0.65 + 0.95{\text{i}}} \right)\)     A1

[2 marks]

a.

attempt to use \(\left| z \right| = \sqrt {{a^2} + {b^2}} \)    (M1)

\(\left| z \right| = \sqrt {\frac{{53}}{{40}}} \left( { = \frac{{\sqrt {530} }}{{20}}} \right)\) or equivalent      A1

Note: A1 is only awarded for the correct exact value.

[2 marks]

b.

EITHER

arg \(z\) = arg(2 + 7i) − arg(6 + 2i)      (M1)

OR

arg \(z\) = arctan\(\left( {\frac{{19}}{{13}}} \right)\)         (M1)

THEN

arg \(z\) = 0.9707 (radians) (= 55.6197 degrees)     A1

Note: Only award the last A1 if 4 decimal places are given.

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.6 » Modulus–argument (polar) form \(z = r\left( {\cos \theta + {\text{i}}\sin \theta } \right) = r{\text{cis}}\theta = r{e^{{\text{i}}\theta }}\)
Show 27 related questions

View options