Date | May 2018 | Marks available | 2 | Reference code | 18M.2.hl.TZ2.1 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 1 | Adapted from | N/A |
Question
Consider the complex number \(z = \frac{{2 + 7{\text{i}}}}{{6 + 2{\text{i}}}}\).
Express \(z\) in the form \(a + {\text{i}}b\), where \(a,\,b \in \mathbb{Q}\).
Find the exact value of the modulus of \(z\).
Find the argument of \(z\), giving your answer to 4 decimal places.
Markscheme
\(z = \frac{{\left( {2 + 7{\text{i}}} \right)}}{{\left( {6 + 2{\text{i}}} \right)}} \times \frac{{\left( {6 - 2{\text{i}}} \right)}}{{\left( {6 - 2{\text{i}}} \right)}}\) (M1)
\( = \frac{{26 + 38{\text{i}}}}{{40}} = \left( {\frac{{13 + 19{\text{i}}}}{{20}} = 0.65 + 0.95{\text{i}}} \right)\) A1
[2 marks]
attempt to use \(\left| z \right| = \sqrt {{a^2} + {b^2}} \) (M1)
\(\left| z \right| = \sqrt {\frac{{53}}{{40}}} \left( { = \frac{{\sqrt {530} }}{{20}}} \right)\) or equivalent A1
Note: A1 is only awarded for the correct exact value.
[2 marks]
EITHER
arg \(z\) = arg(2 + 7i) − arg(6 + 2i) (M1)
OR
arg \(z\) = arctan\(\left( {\frac{{19}}{{13}}} \right)\) (M1)
THEN
arg \(z\) = 0.9707 (radians) (= 55.6197 degrees) A1
Note: Only award the last A1 if 4 decimal places are given.
[2 marks]