User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ2.1
Level HL only Paper 2 Time zone TZ2
Command term Express Question number 1 Adapted from N/A

Question

Consider the complex number z=2+7i6+2iz=2+7i6+2i.

Express zz in the form a+iba+ib, where a,bQ.

[2]
a.

Find the exact value of the modulus of z.

[2]
b.

Find the argument of z, giving your answer to 4 decimal places.

[2]
c.

Markscheme

z=(2+7i)(6+2i)×(62i)(62i)     (M1)

=26+38i40=(13+19i20=0.65+0.95i)     A1

[2 marks]

a.

attempt to use |z|=a2+b2    (M1)

|z|=5340(=53020) or equivalent      A1

Note: A1 is only awarded for the correct exact value.

[2 marks]

b.

EITHER

arg z = arg(2 + 7i) − arg(6 + 2i)      (M1)

OR

arg z = arctan(1913)         (M1)

THEN

arg z = 0.9707 (radians) (= 55.6197 degrees)     A1

Note: Only award the last A1 if 4 decimal places are given.

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Core: Algebra » 1.6 » Modulus–argument (polar) form z=r(cosθ+isinθ)=rcisθ=reiθ
Show 27 related questions

View options