Date | None Specimen | Marks available | 7 | Reference code | SPNone.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Calculate | Question number | 10 | Adapted from | N/A |
Question
Consider the complex numbers \({z_1} = 2{\text{cis}}150^\circ \) and \({z_2} = - 1 + {\text{i}}\) .
Calculate \(\frac{{{z_1}}}{{{z_2}}}\) giving your answer both in modulus-argument form and Cartesian form.
Using your results, find the exact value of tan 75° , giving your answer in the form \(a + \sqrt b \) , a , \(b \in {\mathbb{Z}^ + }\) .
Markscheme
in Cartesian form
\({z_1} = 2 \times - \frac{{\sqrt 3 }}{2} + 2 \times \frac{1}{2}{\text{i}}\) M1
\( = - \sqrt 3 + {\text{i}}\) A1
\(\frac{{{z_1}}}{{{z_2}}} = \frac{{ - \sqrt 3 + {\text{i}}}}{{ - 1 + {\text{i}}}}\)
\( = \frac{{\left( { - \sqrt 3 + {\text{i}}} \right)}}{{( - 1 + {\text{i}})}} \times \frac{{( - 1 - {\text{i}})}}{{( - 1 - {\text{i}})}}\) M1
\( = \frac{{1 + \sqrt 3 }}{2} + \frac{{\left( {\sqrt 3 - 1} \right)}}{2}{\text{i}}\) A1
in modulus-argument form
\({{\text{z}}_2} = \sqrt 2 {\text{cis}}135^\circ \) A1
\(\frac{{{z_1}}}{{{z_2}}} = \frac{{2{\text{cis}}150^\circ }}{{\sqrt 2 {\text{cis}}135^\circ }}\)
\( = \sqrt 2 {\text{cis}}15^\circ \) A1A1
[7 marks]
equating the two expressions for \(\frac{{{z_1}}}{{{z_2}}}\)
\(\cos 15^\circ = \frac{{1 + \sqrt 3 }}{{2\sqrt 2 }}\) A1
\(\sin 15^\circ = \frac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\) A1
\(\tan 75^\circ = \frac{{\cos 15^\circ }}{{\sin 15^\circ }} = \frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}\) M1
\( = \frac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}\) A1
\( = 2 + \sqrt 3 \) A1
[5 marks]