Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 5 Reference code SPNone.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

Consider the complex numbers z1=2cis150 and z2=1+i .

Calculate z1z2 giving your answer both in modulus-argument form and Cartesian form.

[7]
a.

Using your results, find the exact value of tan 75° , giving your answer in the form a+b , a , bZ+ .

[5]
b.

Markscheme

in Cartesian form

z1=2×32+2×12i     M1

=3+i     A1

z1z2=3+i1+i

=(3+i)(1+i)×(1i)(1i)     M1

=1+32+(31)2i     A1

in modulus-argument form

z2=2cis135     A1

z1z2=2cis1502cis135

=2cis15     A1A1

[7 marks]

a.

equating the two expressions for z1z2

cos15=1+322     A1

sin15=3122     A1

tan75=cos15sin15=3+131     M1

=(3+1)(3+1)(31)(3+1)     A1

=2+3     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.6 » Modulus–argument (polar) form z=r(cosθ+isinθ)=rcisθ=reiθ
Show 22 related questions

View options