Date | None Specimen | Marks available | 5 | Reference code | SPNone.1.hl.TZ0.10 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
Consider the complex numbers z1=2cis150∘ and z2=−1+i .
Calculate z1z2 giving your answer both in modulus-argument form and Cartesian form.
Using your results, find the exact value of tan 75° , giving your answer in the form a+√b , a , b∈Z+ .
Markscheme
in Cartesian form
z1=2×−√32+2×12i M1
=−√3+i A1
z1z2=−√3+i−1+i
=(−√3+i)(−1+i)×(−1−i)(−1−i) M1
=1+√32+(√3−1)2i A1
in modulus-argument form
z2=√2cis135∘ A1
z1z2=2cis150∘√2cis135∘
=√2cis15∘ A1A1
[7 marks]
equating the two expressions for z1z2
cos15∘=1+√32√2 A1
sin15∘=√3−12√2 A1
tan75∘=cos15∘sin15∘=√3+1√3−1 M1
=(√3+1)(√3+1)(√3−1)(√3+1) A1
=2+√3 A1
[5 marks]