Date | May 2014 | Marks available | 3 | Reference code | 14M.2.hl.TZ2.13 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 13 | Adapted from | N/A |
Question
The complex numbers u and v are represented by point A and point B respectively on an Argand diagram.
Point A is rotated through π2 in the anticlockwise direction about the origin O to become point A′. Point B is rotated through π2 in the clockwise direction about O to become point B′.
Consider z=r(cosθ+isinθ), z∈C.
Use mathematical induction to prove that zn=rn(cosnθ+isinnθ), n∈Z+.
Given u=1+√3i and v=1−i,
(i) express u and v in modulus-argument form;
(ii) hence find u3v4.
Plot point A and point B on the Argand diagram.
Find the area of triangle OA′B′.
Given that u and v are roots of the equation z4+bz3+cz2+dz+e=0, where b, c, d, e∈R,
find the values of b, c, d and e.
Markscheme
let P(n) be the proposition {z^n} = {r^n}(\cos n\theta + {\rm{i}}\sin n\theta ),n \in {¢^ + }
let n = 1 \Rightarrow
{\text{LHS}} = r(\cos \theta + {\text{i}}\sin \theta )
{\text{RHS}} = r(\cos \theta + {\text{i}}\sin \theta ),{\text{ }}\therefore {\text{P}}(1) is true R1
assume true for n = k \Rightarrow {r^k}{(\cos \theta + {\text{i}}\sin \theta )^k} = {r^k}\left( {\cos (k\theta ) + {\text{i}}\sin (k\theta )} \right) M1
Note: Only award the M1 if truth is assumed.
now show n = k true implies n = k + 1 also true
{r^{k + 1}}{(\cos \theta + {\text{i}}\sin \theta )^{k + 1}} = {r^{k + 1}}{(\cos \theta + {\text{i}}\sin \theta )^k}(\cos \theta + {\text{i}}\sin \theta ) M1
= {r^{k + 1}}\left( {\cos (k\theta ) + {\text{i}}\sin (k\theta )} \right)(\cos \theta + {\text{i}}\sin \theta )
= {r^{k + 1}}\left( {\cos (k\theta )\cos \theta - \sin (k\theta )\sin \theta + {\text{i}}\left( {\sin (k\theta )\cos \theta + \cos (k\theta )\sin \theta } \right)} \right) A1
= {r^{k + 1}}\left( {\cos (k\theta + \theta ) + {\text{i}}\sin (k\theta + \theta )} \right) A1
= {r^{k + 1}}\left( {\cos (k + 1)\theta + {\text{i}}\sin (k + 1)\theta } \right) \Rightarrow n = k + 1 is true A1
{\text{P}}(k) true implies {\text{P}}(k + 1) true and {\text{P}}(1) is true, therefore by mathematical induction statement is true for n \geqslant 1 R1
Note: Only award the final R1 if the first 4 marks have been awarded.
[7 marks]
(i) u = 2{\text{cis}}\left( {\frac{\pi }{3}} \right) A1
v = \sqrt 2 {\text{cis}}\left( { - \frac{\pi }{4}} \right) A1
Notes: Accept 3 sf answers only. Accept equivalent forms.
Accept 2{e^{\frac{\pi }{3}i}} and \sqrt 2 {e^{ - \frac{\pi }{4}i}}.
(ii) {u^3} = {2^3}{\text{cis}}(\pi ) = - 8
{v^4} = 4{\text{cis}}( - \pi ) = - 4 (M1)
{u^3}{v^4} = 32 A1
Notes: Award (M1) for an attempt to find {u^3} and {v^4}.
Accept equivalent forms.
[4 marks]
A1
Note: Award A1 if A or {\text{1 + }}\sqrt 3 i and B or 1 - i are in their correct quadrants, are aligned vertically and it is clear that \left| u \right| > \left| v \right|.
[1 mark]
Area = \frac{1}{2} \times 2 \times \sqrt 2 \times \sin \left( {\frac{{5\pi }}{{12}}} \right) M1A1
= 1.37{\text{ }}\left( { = \frac{{\sqrt 2 }}{4}\left( {\sqrt 6 + \sqrt 2 } \right)} \right) A1
Notes: Award M1A0A0 for using \frac{{7\pi }}{{12}}.
[3 marks]
(z - 1 + {\text{i}})(z - 1 - {\text{i}}) = {z^2} - 2z + 2 M1A1
Note: Award M1 for recognition that a complex conjugate is also a root.
\left( {z - 1 - \sqrt 3 {\text{i}}} \right)\left( {z - 1 + \sqrt 3 {\text{i}}} \right) = {z^2} - 2z + 4 A1
\left( {{z^2} - 2z + 2} \right)\left( {{z^2} - 2z + 4} \right) = {z^4} - 4{z^3} + 10{z^2} - 12z + 8 M1A1
Note: Award M1 for an attempt to expand two quadratics.
[5 marks]