User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

A continuous random variable XX has probability density function ff given by

f(x)={x2a+b,0x40otherwisewhere a and b are positive constants.

It is given that P(X2)=0.75.

Eight independent observations of X are now taken and the random variable Y is the number of observations such that X2.

Show that a=32 and b=112.

[5]
a.

Find E(X).

[2]
b.

Find Var(X).

[2]
c.

Find the median of X.

[3]
d.

Find E(Y).

[2]
e.

Find P(Y3).

[1]
f.

Markscheme

40(x2a+b)dx=1[x33a+bx]40=1643a+4b=1    M1A1

42(x2a+b)dx=0.75563a+2b=0.75    M1A1

 

Note:    20(x2a+b)dx=0.2583a+2b=0.25 could be seen/used in place of either of the above equations.

 

evidence of an attempt to solve simultaneously (or check given a,b values are consistent)     M1

a=32, b=112     AG

[5 marks]

a.

E(X)=40x(x232+112)dx    (M1)

E(X)=83(=2.67)     A1

[2 marks]

b.

E(X2)=40x2(x232+112)dx     (M1)

Var(X)=E(X2)[E(X)]2=1615(=1.07)     A1

[2 marks]

c.

m0(x232+112)dx=0.5    (M1)

m396+m12=0.5(m3+8m48=0)     (A1)

m=2.91     A1

[3 marks]

d.

YB(8, 0.75)     (M1)

E(Y)=8×0.75=6     A1

[2 marks]

e.

P(Y3)=0.996     A1

[1 mark]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.6
Show 85 related questions

View options