Date | May 2014 | Marks available | 4 | Reference code | 14M.2.hl.TZ2.8 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 8 | Adapted from | N/A |
Question
The random variable \(X\) has a Poisson distribution with mean \(\mu \).
Given that \({\text{P}}(X = 2) + {\text{P}}(X = 3) = {\text{P}}(X = 5)\),
(a) find the value of \(\mu \);
(b) find the probability that X lies within one standard deviation of the mean.
Markscheme
(a) \(\frac{{{\mu ^2}{{\text{e}}^{ - \mu }}}}{{2!}} + \frac{{{\mu ^3}{{\text{e}}^{ - \mu }}}}{{3!}} = \frac{{{\mu ^5}{{\text{e}}^{ - \mu }}}}{{5!}}\) (M1)
\(\frac{{{\mu ^2}}}{2} + \frac{{{\mu ^3}}}{6} - \frac{{{\mu ^5}}}{{120}} = 0\)
\(\mu = 5.55\) A1
[2 marks]
(b) \(\sigma = \sqrt {5.55 \ldots } = 2.35598 \ldots \) (M1)
\({\text{P}}(3.19 \leqslant X \leqslant 7.9)\)
\({\text{P}}(4 \leqslant X \leqslant 7)\)
\( = 0.607\) A1
[2 marks]
Total [4 marks]