User interface language: English | Español

Date May 2017 Marks available 6 Reference code 17M.2.hl.TZ1.3
Level HL only Paper 2 Time zone TZ1
Command term Find Question number 3 Adapted from N/A

Question

The coefficient of \({x^2}\) in the expansion of \({\left( {\frac{1}{x} + 5x} \right)^8}\) is equal to the coefficient of \({x^4}\) in the expansion of \({\left( {a + 5x} \right)^7},{\text{ }}a \in \mathbb{R}\). Find the value of \(a\).

Markscheme

METHOD 1

\(^8{C_r}{\left( {\frac{1}{x}} \right)^{8 - r}}{(5x)^r} = {}^8Cr{\left( 5 \right)^r}{x^{2r - 8}}\)   (M1)

\(r = 5\)     (A1)

\(^8{C_5} \times {5^5}{ = ^7}{C_4}{a^3} \times {5^4}\)     M1A1

\(56 \times 5 = 35{a^3}\)

\({a^3} = 8\)     (A1)

\(a = 2\)     A1

METHOD 2

attempt to expand both binomials     M1

\(175000{x^2}\)     A1

\(21875{a^3}{x^4}\)     A1

\(175000 = 21875{a^3}\)     M1

\({a^3} = 8\)     (A1)

\(a = 2\)     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.3
Show 41 related questions

View options