User interface language: English | Español

Date May 2015 Marks available 2 Reference code 15M.1.hl.TZ1.4
Level HL only Paper 1 Time zone TZ1
Command term Expand Question number 4 Adapted from N/A

Question

Expand \({(x + h)^3}\).

[2]
a.

Hence find the derivative of \(f(x) = {x^3}\) from first principles.

[3]
b.

Markscheme

\({(x + h)^3} = {x^3} + 3{x^2}h + 3x{h^2} + {h^3}\)     (M1)A1

[2 marks]

a.

\(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{{{(x + h)}^3} - {x^3}}}{h}\)     (M1)

\( = \mathop {\lim }\limits_{h \to 0} \frac{{{x^3} + 3{x^2}h + 3x{h^2} + {h^3} - {x^3}}}{h}\)

\( = \mathop {\lim }\limits_{h \to 0} (3{x^2} + 3xh + {h^2})\)     A1

\( = 3{x^2}\)     A1

 

Note:     Do not award final A1 on FT if \( = 3{x^2}\) is not obtained

 

Note:     Final A1 can only be obtained if previous A1 is given

[3 marks]

Total [5 marks]

b.

Examiners report

Well done although some did not use the binomial expansion.

a.

Fine by those who knew what first principles meant, not by the others.

b.

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options