User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.hl.TZ1.4
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 4 Adapted from N/A

Question

Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.

Markscheme

METHOD 1

total number of arrangements 7!     (A1)

number of ways for girls and boys to sit together \( = 3! \times 4! \times 2\)     (M1)(A1)

 

Note:    Award M1A0 if the 2 is missing.

 

probability \(\frac{{3! \times 4! \times 2}}{{7!}}\)     M1

 

Note:     Award M1 for attempting to write as a probability.

 

\(\frac{{2 \times 3 \times 4! \times 2}}{{7 \times 6 \times 5 \times 4!}}\)

\( = \frac{2}{{35}}\)     A1

 

Note:     Award A0 if not fully simplified.

 

METHOD 2

\(\frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} + \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}\)     (M1)A1A1

 

Note:     Accept \(\frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} \times 2\) or \(\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} \times 2\).

 

\( = \frac{2}{{35}}\)     (M1)A1

 

Note:     Award A0 if not fully simplified.

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.3
Show 41 related questions

View options