User interface language: English | Español

Date May 2013 Marks available 4 Reference code 13M.1.hl.TZ2.3
Level HL only Paper 1 Time zone TZ2
Command term Expand Question number 3 Adapted from N/A

Question

Expand \({(2 - 3x)^5}\) in ascending powers of x, simplifying coefficients.

Markscheme

clear attempt at binomial expansion for exponent 5     M1

\({2^5} + 5 \times {2^4} \times ( - 3x) + \frac{{5 \times 4}}{2} \times {2^3} \times {( - 3x)^2} + \frac{{5 \times 4 \times 3}}{6} \times {2^2} \times {( - 3x)^3}\)

\( + \frac{{5 \times 4 \times 3 \times 2}}{{24}} \times 2 \times {( - 3x)^4} + {( - 3x)^5}\)     (A1)

Note: Only award M1 if binomial coefficients are seen.

 

\( = 32 - 240x + 720{x^2} - 1080{x^3} + 810{x^4} - 243{x^5}\)     A2

Note: Award A1 for correct moduli of coefficients and powers. A1 for correct signs.

 

Total [4 marks]

Examiners report

Generally well done. The majority of candidates obtained a quintic with correct alternating signs. A few candidates made arithmetic errors. A small number of candidates multiplied out the linear expression, often correctly.

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options