User interface language: English | Español

Date November 2009 Marks available 6 Reference code 09N.2.hl.TZ0.4
Level HL only Paper 2 Time zone TZ0
Command term Find and Hence Question number 4 Adapted from N/A

Question

When \({\left( {1 + \frac{x}{2}} \right)^2}\) , \(n \in \mathbb{N}\) , is expanded in ascending powers of \(x\) , the coefficient of \({x^3}\) is \(70\).

(a)     Find the value of \(n\) .

(b)     Hence, find the coefficient of \({x^2}\) .

Markscheme

(a)     coefficient of \({x^3}\) is \(\left( {\begin{array}{*{20}{c}}
  n \\
  3
\end{array}} \right){\left( {\frac{1}{2}} \right)^3} = 70\)    
M1(A1)

\(\frac{{n!}}{{3!\left( {n - 3} \right)!}} \times \frac{1}{8} = 70\)     (A1)

\( \Rightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{48}} = 70\)     (M1)

\(n = 16\)     A1

 

(b)     \(\left( {\begin{array}{*{20}{c}}
  {16} \\
  2
\end{array}} \right){\left( {\frac{1}{2}} \right)^2} = 30\)    
A1

 

[6 marks]

Examiners report

Most candidates were able to answer this question well.

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options