User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.1.hl.TZ0.3
Level HL only Paper 1 Time zone TZ0
Command term Find and Hence Question number 3 Adapted from N/A

Question

Write down and simplify the expansion of \({(2 + x)^4}\) in ascending powers of \(x\).

[3]
a.

Hence find the exact value of \({(2.1)^4}\).

[3]
b.

Markscheme

\({(2 + x)^4} = {2^4} + 4 \bullet {2^3}x + 6 \bullet {2^2}{x^2} + 4 \bullet 2{x^3} + {x^4}\)     M1(A1)

 

Note:     Award M1 for an expansion, by whatever method, giving five terms in any order.

 

\( = 16 + 32x + 24{x^2} + 8{x^3} + {x^4}\)     A1

 

Note:     Award M1A1A0 for correct expansion not given in ascending powers of \(x\).

[3 marks]

a.

let \(x = 0.1\) (in the binomial expansion)     (M1)

\({2.1^4} = 16 + 3.2 + 0.24 + 0.008 + 0.0001\)     (A1)

\( = 19.4481\)     A1

 

Note:     At most one of the marks can be implied.

[3 marks]

Total [6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in N\) .
Show 22 related questions

View options